Matrix Norm Essentials

- Matrix norms have vector norm properties:
 - $\circ ||A|| \ge 0$ and $||A|| = 0 \implies A = 0$
 - $\circ ||A + B|| \le ||A|| + ||B||$
 - $\circ \|\alpha A\| = |\alpha| \|A\|$
- Really only four norms to know:
 - $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}, \|\cdot\|_{\text{Frob}}$
 - 3 have easy-to-compute formulas: $1, \infty$, Frob
 - \circ 3 are induced from vector norms: $1, 2, \infty$
- Induced norms have ρ(A) ≤ ||A||.
 But expect ρ(A) < ||A|| in general, and sometimes ρ(A) ≪ ||A||.
- $\|\cdot\|_2$ norm best for Euclidean ideas and hermitian/normal matrices. Reasons:
 - ||QA||₂ = ||A||₂ if Q is unitary (Q*Q = I).
 σ₁(A) = ||A||₂.
 If A* = A then ρ(A) = ||A||₂.
- Iteration v, Av, A^2v, \ldots converges if and only if $\rho(A) < 1$.
 - Thus if ||A|| < 1 then convergence. Not conversely!