
Math 614 Numerical Linear Algebra (Bueler) Assigned 12/1/21

Final Exam
(take home)

Due Wednesday 8 December, 2021, at 5pm

Submit by email elbueler@alaska.edu or my Chapman 101 box

100 points total

As stated on the syllabus, this Final is worth 25% of your course grade.

Rules. You may use reference books or reference articles, print or electronic, but
they must be clearly cited. References to the textbook should be used as needed
for clarity. You may not search for complete or substantial solutions to these
particular problems. You may not talk about this exam, electronically or other-
wise, with anyone other than Ed Bueler. This exam is your own work.

F1. (15 pts) Over the course of the semester, several times we have used a two-
word phrase (2WP) to describe a factorization. In fact there are 15 possible 2WPs which
can be formed from a column-A adjective and a column-B noun from this table:

column A column B
triangular triangularization
orthogonal orthogonalization

unitary diagonalization
tridiagonalization
hessenbergization

(a) Consider only the textbook Lectures which we covered, namely Lectures 1–17 and
20–27. For square matrices, which distinct factorizations do use, or easily could use, one
of these 15 possible 2WPs? For each such factorization, state the matrix factorization,
its name and/or algorithm reference(s) in the textbook, and its 2WP(s).

(b) The adjectives “orthogonal” and “unitary” are essentially synonyms. However,
the textbook systematically uses “unitary” for a certain kind of factorization. Explain,
in a few sentences, the distinct purpose of the “unitary” factorizations.

(c) (1 pt Extra Credit) The SVD factorization is not one of the answers in part (a).
Why? Invent a good 2WP to describe it.

(d) (3 pts Extra Credit) Create, implement, and test an algorithm corresponding to
a 2WP which is unused. That is, invent an algorithm which is not in the textbook and
which is not listed in your part (a) answer.
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Hints. In (a) I found 8 distinct factorizations corresponding to 7 distinct 2WPs. The
matching is not one-to-one, but fairly close. You can get full credit in part (a) without
perfect agreement with my list, but not if you miss important factorization ideas.

F2. (15 pts) The producers and I believe we have a great new reality series, Naked
and Calculating. (It will do great in the North Korean market . . . little competition.) The
plan is to have three contestants, each seeking riches, on three islands. Each contestant
will have unlimited supply of pencils and paper, plus adequate food and drink, but
nothing else. Naturally, there are hidden cameras so we can watch the exciting action!

Each island has a problem, and algorithm which the contestant must use:

island 1: Compute the determinant of anm×mmatrix using expansion in minors.
island 2: Solve an m×m upper-triangular linear system using back-substitution.
island 3: Solve an m×m linear system using Gaussian elimination.

After finding-out which one is their island, a contestant chooses the m value, but then
the producers will choose generic values to fill the matrix entries. By choosing m the
contestants are gambling that they can compute the correct answer, by hand, in one
month of work. In fact, at the end of one month a contestant either gets 2m US dollars
for correctly computing the solution of a problem, or zero dollars if their answer is
incorrect. (All entries in the final answer have to be correct to three digits.)

(a) As a contestant, which island would you choose? Most avoid? Explain.

(b) For each island, state the specific m you would choose if you are put on that
island. You must justify your choices via a quantitative, though necessarily speculative,
explanation.

(c) For excitement, at the last minute before going on their island, after already having
chosen an m value, contestants are told that in fact they can choose their algorithm,
and that they can revise their m choice. For one of the islands this represents a huge
improvement in the pay-out. Explain; give a new m value with explanation.

Hints. Algorithm stability is not the issue. Conditioning is not the issue. Work esti-
mates! Good writing is needed for full credit in all parts, but a correct answer exists
to part (a). Parts (b) and (c) require that you give specific values of m based on a quan-
titative and reasonable estimate of how fast you can do arithmetic by hand. (There is
no one correct value for m, but you must choose an m and justify it!) Note that you,
as a contestant, would want to re-check your work many times! Expansion in minors
appeared on the solutions to Assignment #2. Don’t worry about the losing contestants;
this is not Squid Game!
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F3. (10 pts) Consider the following A ∈ R3×4:

A =

 2 3 5 −1
−1 7 3 5

−1 −1 2 4


Find the matrix B ∈ R3×4 of rank 2 which is closest to A in 2-norm.

Hint. This easy question arose near the beginning of the semester. Yes, you can use
MATLAB, but make it clear what you are doing and why.

F4. (10 pts) Expansion in minors may be a terrible algorithm for computing de-
terminants, but it is backward-stable. Prove this in the 1 × 1 and 2 × 2 matrix cases,
assuming as usual that your computer satisfies axioms (13.5) and (13.7). (An induction
argument would show it in general, but this is not requested.)

F5. (20 pts) Recall the following ideas about our most trustworthy linear solver: Algo-
rithm 10.1 is Householder triangularization A = QR. Code house.m implements this; read
and understand it! It outputs a lower-triangular matrix W containing the “vk” vectors,
and an upper-triangular R, but of course WR 6= A. Next, Alg. 10.2 implements the action
of Q∗ from the vectors stored in W . Alg. 16.1 adds back-substitution (Alg. 17.1) to give a
solver for square, nonsingular linear systems Ax = b. Theorem 16.2 shows that Alg. 16.1 is
backward-stable.

Implement Alg. 16.1, but do it in-place. In particular, write a Matlab function

x = inhousesolve(A,b)

This function should start by checking that the inputs make sense, i.e. A is square
(m × m) and b is a compatibly-sized column vector. After that, the next line of your
code should append one row of space to the bottom of the array A, like this

A = [A; zeros(1,m)];

(You will need the appended space!) From now on, the only matrix or 2D array in your
code is A itself, and A does not change size. You will modify entries of the array A, and
the goal is to construct the vector x. Inside your function you will implement Alg. 10.1
by modifying the entries of A to store W and R, implement Alg. 10.2 by referring to
entries of the array A, and implement Alg. 17.1 by referring to other entries of A.

Requirements. Do not use backslash, nor any built-in matrix factorization. Use only
matrix/vector addition and multiplication, for loops, and colon notation.

Hint. Start your coding by modifying house.m to do its operations in-place on the
padded A array. Check that you get the same W and R, but “stacked” in A.

Weird kind of moral support. Your resulting code will definitely be seen as a black box by
the uninitiated. Just from the source code, someone who does not know Householder
ideas will wonder what magic is occurring!
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F6. (15 pts) (a) Implement Algorithm 26.1, Householder reduction to Hessen-
berg form. Specifically, build a code with the signature

H = hessen(A,stages)

Your code will check that A is square, print the stages (next part) if stages is true,
and finally return a Hessenberg matrix H such that A = QHQ∗ for some unitary Q.
Note that your code can throw-away the vectors vk; they are not returned.

(b) For a specific 5 × 5 matrix A of your choice, run the code and show the four
stages A, Q∗

1AQ1, Q∗
2Q

∗
1AQ1Q2, and H = Q∗

3Q
∗
2Q

∗
1AQ1Q2Q3. That is, make concrete

the cartoons on pages 197–198, “A Good Idea”.

(c) For the same 5 × 5 matrix A, use the built-in eig() to show that the eigenvalues
of A and H are the same within rounding error. Now construct a new 4 × 4 Hermit-
ian matrix S and compute T=hessen(S). Check that T is tridiagonal and Hermitian.
Then show the eigenvalues of S and T are the same within rounding error.

F7. (15 pts) Implement Algorithm 27.3, namely Rayleigh quotient iteration. In
particular, write a Matlab code with signature

[lam,v] = rqi(A,v0)

which returns an eigenvalue lam corresponding to the eigenvector v, and which starts
the iteration with v0. You will need a stopping criterion to avoid a warning when
solving the linear system with the matrix B = A− λ(k−1)I . I suggest stopping when

rcond(B)<10*eps

(Using Matlab documentation, explain what this criterion means.) Show your code
works by (i) reproducing the iterates λ(0), λ(1), λ(2) in Example 27.1, and (ii) by matching
one of the eigenvalues and eigenvectors of a random 20 × 20 Hermitian matrix. (For
(ii), assume that the built-in eig() is exact.)

Extra Credit. (5 pts) Theorem 15.1 assumes that your algorithm is backward
stable. But what if it is merely “stable”, i.e. according to the definition given in Lecture
14? To my surprise, I was able to prove a theorem which was nearly as strong. Show:

Theorem. Suppose a stable algorithm f̃ : X → Y is applied to solve a problem f : X → Y

with condition number κ on a computer satisfying (13.5), (13.7). Then there is a constant
γ ≥ 0 so that the relative errors satisfy

‖f̃(x)− f(x)‖
‖f(x)‖

= O ((κ(x) + γ)εmachine) as εmachine → 0.

Hints. Roughly follow the proof of Theorem 15.1. Replace “f̃(x) = f(x̃)” with f̃(x) =
f̃(x) − f(x̃) + f(x̃). You will need the triangle inequality in addition to steps in the
Thm. 15.1 proof. Make it clear how the constant “γ” arises.


