
Math 426 Numerical Analysis (Bueler) Assigned Wednesday 9/22/21

Assignment #4
Due Friday 1 October, 2021 at the start of class.

Submit on paper or by email: elbueler@alaska.edu

Exercise 2.4.2. (This is a Matlab/Octave exercise. Note that you generate an exact solu-
tion x first, and then a right-hand side b by multiplication, so that you can measure the error
x− z. Also please report norm(x-z), the length of x− z.)

Exercise 2.4.5. (lufact2() is very short and basically just calls lufact().)

Exercise 2.4.6. (Do parts (a) and (b) only. This Exercise shows how the Matlab function
det() is implemented, basically, and it does not use a cofactor expansion! In part (b) the
reason your determinant() is a bit less accurate than det() is that the built-in also uses
row pivoting, but do not worry about that here.)

Exercise 2.5.1. (Do parts (a) and (b) only.)

Exercise 2.5.3.

Exercise 2.5.5.

Exercise 2.6.2. (Example 2.4.1 is done on pages 52–54.)

P4. The LU factorization in Section 2.4, namely [L,U] = lufact(A), yields A =
LU , but without pivoting. By contrast, the Matlab/Octave build-in method lu() does
row pivoting to reduce the accumulated rounding error.

As explained in Section 2.6, row pivoting implies an invertible permutation matrix
P so that PA = LU or equivalently A = P−1LU . Conceptually, a row pivoting solution
pre-multiplies the linear system by P before doing the LU factorization:

Ax = b =⇒ PAx = Pb =⇒ LUx = Pb =⇒ L(Ux) = Pb.

Note that to use lu() one asks for three matrix outputs:
>> [L,U,P] = lu(A)

This difference in factorizations leads to different procedures for solving a linear
system Ax = b:

using lufact():

A = LU

Lz = b

Ux = z

using lu():

PA = LU ← lufact() or lu(), respectively
Lz = Pb ← forward substitution
Ux = z ← back substitution



2

(a) Write a Matlab/Octave script which generates linear systems Ax = b from ran-
dom matrices A = randn(n,n)with n = 3, 10, 30, 100, 300. Your program should also
choose random exact solutions xexact = randn(n,1) and then get the right-hand-
sides by multiplication (b = A * xexact) so that the solution of each linear system
is known. Use lufact(), forwardsub(), and backsub() to solve the linear sys-
tems to get computed solutions xa. Report norm(xa-xexact) for each linear system;
this is the magnitude of the error caused by rounding during the solution process.

(b) Now add the lu() solution method to the script and solve the same linear sys-
tems to get new computed solutions xb. (That is, each time your program generates a ran-
dom linear system it should solve it by both methods.) Again report norm(xb-xexact).

(c) If everything is correct in the above parts then you will notice that the errors from
lufact() are larger than for lu(), especially for the larger n values. Create a figure
to show this evidence. Specifically, in one loglog() graph with n on the horizontal
axis and the errors on the vertical axis, show the norm(x?-xexact) errors from both
parts. Label the axes appropriately, and perhaps use legend() to distinguish between
the parts. Ideally, your figure will show several repeats of the experiment, e.g. from
generating five linear systems for each n value.

Note 1. You are allowed to combine all parts into one program which generates one
figure. In any case, include the programs you write and the figures it produces into
your submitted Assignment. Essentially all the results should be shown in figures, as
I don’t really want to see numbers as output.

Note 2. The effect shown in your figure is even stronger for larger sizes n = 1000
or n = 3000, for example. However, lufact() is very slow for these sizes, so I did
not ask for those sizes. By comparison lu() is reasonably fast for these sizes. The
difference in performance is because lu() is implemented in compiled C code, while
Matlab/Octave for loops in lufact() are always slower. An interpreted language
must allow for dynamic possibilities in a loop.


