
Math 426 Numerical Analysis (Bueler) Assigned 11/17/21

Assignment #10
Due Monday 29 November, 2021 at the start of class.

Submit on paper or by email: elbueler@alaska.edu

Exercise 6.1.4.

Exercise 6.1.5.

Exercise 6.2.1. Do part (b) only. Note that the “error” is maxi |ui − û(ti)|, as in
Example 6.2.1, and not the local truncation error.

Exercise 6.2.2. Do parts (b) and (g) only. Here the “error at the final time” is
|un − û(tn)|.

Exercise 6.2.4. Do part (a) only.

Exercise 6.3.1. Do part (a) only.

Exercise 6.3.3. Do parts (a) and (b) only. A key idea is that the function you pro-
vide for the dudt argument needs to be a vector-valued function
of the scalar t and the vector u. This can be done at the command
line or by saving a function in a .m file. In either case, show me
the code you used and how you ran it from the command line.

P13. (a) Watch the following video, The Beauty of Bezier Curves by Freya Holmér:
www.youtube.com/watch?v=aVwxzDHniEw

For parts below, all the important stuff occurs in the first 7 minutes, but the whole thing
is 25 easy minutes! (Nothing to turn in. Full credit for (a) if you make progress below.)

(b) Suppose P0 and P1 are points in the plane, so P0 = (x0, y0) and P1 = (x1, y1), and
think of such points as vectors. The line segment between P0 and P1 is the vector-valued
function F (t) = (1 − t)P0 + tP1. Note that F (t), which she calls lerp(P0,P1,t), is a linear
combination of P0 and P1. A quadratic Bezier curve with control points P0,P1,P2 is a linear
combination of F functions:

Q(t) = (1− t) [(1− t)P0 + tP1] + t [(1− t)P1 + tP2]

Expand this expression and show that it is quadratic in t. In fact, you can factor-out the
points and write it as

Q(t) = P0 β0(t) + P1 β1(t) + P2 β2(t) =
2∑

j=0

Pj βj(t).

Find β0(t), β1(t), and β2(t).

https://www.youtube.com/watch?v=aVwxzDHniEw

2

(c) A cubic Bezier curve with control points P0,P1,P2,P3 is a linear combination of qua-
dratic Bezier curves:

P (t) = (1− t) {(1− t) [(1− t)P0 + tP1] + t [(1− t)P1 + tP2]}
+ t {(1− t) [(1− t)P1 + tP2] + t [(1− t)P2 + tP3]} .

Writing it this way is what she calls “De Casteljau’s algorithm.” As she says, it is nu-
merically stable because it is just “lerps all the way down.” Expand P (t) in order to
compute bj(t) in the expression

P (t) =
3∑

j=0

Pj bj(t).

You will be able to check your formulas via the video. The functions bj(t) are the cubic
Bernstein polynomials. Note that she visualizes this representation using four colors for
the weights, which are the values bj(t).

(d) Confirm that P (0) = P0 and P (1) = P3, that is, confirm that the cubic curve starts
at control point P0 and ends at P3. Note that the curve does not, however, hit P1 and P2.

(e) Write you own cubic Bezier curve code in Matlab. In particular, write a function
function bezier(p0, p1, p2, p3)

where each px is a pair of numbers. That is, the input is four points. The function
should simply generate a figure showing the curve, and also the four points as markers.
(There is no need to return numbers. You can use either of the forms above for P (t).) When you
test it, try to approximately reproduce one of the figures from the video; mention which
minute in the video is showing a similar curve.

