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purpose

I these slides are easier to read than the book’s text
I they will help you do Assignment #7
I but you still need to read the book!

◦ read sections I.6, IV.1, IV.2, and IV.3
I my goal:

if you spend time on these slides, and on the above
sections of the book, then you will find Assignment #7
doable. . . and perhaps easy



3 kinds of integrals over curves

I suppose γ is a smooth curve in the plane R2 = C
◦ it can be parameterized γ(t) = (x(t), y(t)) for a ≤ t ≤ b

I suppose P(x , y), Q(x , y), and f (z) are continuous functions
I here are 3 kinds of integrals over γ:

A
∫
γ

P dx + Q dy

B
∫
γ

f (z)dz

C
∫
γ

f (z) |dz|



general advice on these integrals

I it is easy to get confused with these closely-related integral
concepts

I the book calls both B and C “complex line integrals”, and it
gives no names to distinguish the two

I A is a Chapter III topic . . . we already have practice

I to keep track of the differences you will need both
◦ to pay attention to the notation, and
◦ to trust the notation to tell you what to do



concrete examples of all three

I let’s compute A , B , C for the same specific curve:

γ(t) = (x(t), y(t)) = (t ,1− t), 0 ≤ t ≤ 2

I assume P(x , y) = xy and Q(x , y) =
√

x + y :

A
∫
γ

P dx + Q dy =

∫ b

a
P

dx
dt

dt + Q
dy
dt

dt

=

∫ 2

0
t(1− t)(1) + (

√
t + 1− t)(−1)dt

=

∫ 2

0
2t − t2 −

√
t − 1 dt

= 22 − 23

3
− 2

3
23/2 − 2 = −2

3
(1 + 2

√
2)

I this γ is not a closed curve, so Green’s theorem is not an option
◦ . . . but it was not needed either



concrete examples 2

I continuing with same path γ(t), now assume f (z) = z2:

B
∫
γ

f (z) dz =

∫ b

a
f (z(t))

dz
dt

dt

=

∫ b

a
f (x(t) + iy(t))(x ′(t) + iy ′(t)) dt

=

∫ 2

0
(t + i(1− t))2 (1− i) dt

= (1− i)
(∫ 2

0
2t − 1 dt + 2i

∫ 2

0
t − t2 dt

)
= (1− i)

(
2− 2i

2
3

)
=

2
3
− i

10
3

I we will see that if f (z) is analytic, as in this case, then B -type
integrals are path-independent
◦ Cauchy’ Theorem: if γ is closed and if f (z) is analytic, then∮

γ
f (z) dz = 0

◦ in above example γ is not closed, but answer would be the same
for another curve with same starting and ending points



concrete examples 3

I continuing with same curve γ(t), and same f (z):

C
∫
γ

f (z) |dz| =
∫ b

a
f (x(t) + iy(t))

√
x ′(t)2 + y ′(t)2 dt

=

∫ 2

0
(t + i(1− t))2

√
1 + 1 dt

=
√

2

(∫ 2

0
2t − 1 dt + 2i

∫ 2

0
t − t2 dt

)

=
√

2
(

2− 2i
2
3

)
= 2
√

2− i
4
√

2
3

I note |dz| = ds is “element of arclength”

I such C -type integrals are (essentially) never path-independent
even when f (z) is analytic
◦ only exception is when f (z) = 0



summary: general forms for parameterized curves

I if γ(t) = (x(t), y(t)), a ≤ t ≤ b, is smooth or piecewise smooth,
and if P(x , y), Q(x , y), f (z) are continuous, then

A
∫
γ

P dx + Q dy =

∫ b

a
P

dx
dt

dt + Q
dy
dt

dt

=

∫ b

a
P (x(t), y(t)) x ′(t) + Q (x(t), y(t)) y ′(t) dt

B
∫
γ

f (z) dz =

∫ b

a
f (z(t))

dz
dt

dt

=

∫ b

a
f (x(t) + iy(t))

(
x ′(t) + iy ′(t)

)
dt

C
∫
γ

f (z) |dz| =
∫ b

a
f (z(t))

∣∣∣∣dz
dt

∣∣∣∣ dt

=

∫ b

a
f (x(t) + iy(t))

√
x ′(t)2 + y ′(t)2 dt

I key idea: if you use the notation carefully and consistently then it
will tell you how to expand until you are integrating a function of t



comments, and quicker notation

I remaining slides focus on B - and C -type integrals, which are
the subject of IV.1 and IV.2

I when a curve γ is closed, tradition says to add a circle to the
integral symbol
◦ any path γ: ∫

γ

f (z) dz

◦ closed path γ: ∮
γ

f (z) dz

I writing the curve γ as “z(t)” for “x(t) + iy(t)”, instead of
“(x(t), y(t))”, often makes computations quicker (next few slides)

◦ especially for B -type integrals
∫
γ

f (z) dz
◦ note: if γ is closed, and given by z(t) on a ≤ t ≤ b, then

z(a) = z(b)



integrals of 1 on closed paths

I easy case of B over any closed curve:∮
γ

1 dz =

∫ b

a
z ′(t)dt = z(b)− z(a) = 0

I easy case of C over any closed curve:∮
γ

1 |dz| =
∫ b

a
|z ′(t)|dt =

∫ b

a

√
x ′(t)2 + y ′(t)2 dt = (length of γ)

◦ this integral just computes the arclength, from calculus:

L =

∫ b

a

√(
dx
dt

)2

+

(
dy
dt

)2

dt



easy exponential integrals on closed paths

I easy case of B over the unit circle γ centered at the origin:
z(t) = eit , 0 ≤ t ≤ 2π:∮

γ

ez dz =

∫ 2π

0
ez(t)z′(t) dt ∗= ez(2π) − ez(0) = 0

I key step ∗ is the Fundamental Theorem of Calculus (see below)
I plus the chain rule:

d
dz

ez = ez so
d
dt

(
ez(t)

)
= ez(t)z ′(t)

I the value comes out zero for any closed curve; it did not actually
matter that γ was a circle



easy exponential integrals on closed paths 2

I easy case of C over same circle; note z(t) = eit so
x(t) = cos t , y(t) = sin t :∮

γ

ez |dz| =
∫ 2π

0
e(eit )

√
x ′(t)2 + y ′(t)2 dt

=

∫ 2π

0
e(eit )

√
sin2 t + cos2 t dt =

∫ 2π

0
e(eit ) dt

†
= 2πe0 = 2π

I key step † is Mean Value Property (section III.4) with z0 = 0 and
r = 1 and f (z) = ez :

f (z0) =
1

2π

∫ 2π

0
f
(
z0 + reiθ) dθ

I it was important that γ is a circle; on other closed curves the
result would be different



the complex Fundamental Theorem of Calculus

I generally on any path γ of the form z(t) for a ≤ t ≤ b, if
F ′(z) = f (z) then∫

γ

f (z)dz = F (z(b))− F (z(a))

I Proof. By chain rule,

d
dt

[F (z(t))] = F ′(z(t)) z ′(t) = f (z(t)) z ′(t).

Thus ∫
γ

f (z)dz =

∫ b

a
f (z(t)) z ′(t)dt =

∫ b

a

d
dt

[F (z(t))] dt

= F (z(b))− F (z(a))



B -type integrals over closed paths

I by FTC on last slide, B -type integrals over closed paths come
out zero under a condition

I namely: if there is F (z) for which F ′(z) = f (z) then∮
γ

f (z)dz = F (z(b))− F (z(a)) = 0

because z(b) = z(a) if γ is closed



B -type integrals over closed paths 2

I there is another justification of why these integrals are zero,
under a different condition

I namely: assume γ is the boundary of a domain D
I also write f (z) = u(x , y) + iv(x , y) and γ(t) = (x(t), y(t))
I if f (z) is analytic in D, and on γ = ∂D, then∮

γ

f (z) dz =

∫ b

a
(u(x , y) + iv(x , y))(x ′ + iy ′) dt

=

[∮
γ

u dx − v dy
]
+ i
[∮

γ

v dx + u dy
]

Green’s Thm
=

[∫∫
D

∂(−v)
∂x

− ∂u
∂y

dx dy
]
+ i
[∫∫

D

∂u
∂x
− ∂v
∂y

dx dy
]

Cauchy-Riemann
= 0

◦ this Cauchy’s Theorem as stated in section IV.3
◦ anti-derivative F (z) is never mentioned!



connection to the Mean Value Property (MVP)

I assume f (z) is analytic on some domain which includes the disk
of radius R > 0 around z0

I if curve γ is a circle, i.e. z(t) = z0 + r eit with r < R, then by MVP∮
γ

f (z) |dz| =
∫ 2π

0
f (z0 + r eit) r dt = 2πr f (z0)

I for example, on slide 12 the C -type integral was done by MVP
I by contrast, the integral with “dz” instead of “|dz|” is zero (by

chain rule or Cauchy’s Theorem):∮
γ

f (z)dz =

∫ 2π

0
f (z0 + r eit) ir eit dt

= f (z0 + r ei0)− f (z0 + r ei2π) = 0



extra: the integrals at the start of section IV.1

I we seem to see yet another form of integral on page 102 of the
book, namely ∫

h(z)dz =

∫
h(z)dx + i

∫
h(z)dy

I . . . a B -type integral written with dz = dx + idy expanded
I nothing new or special! . . . merely allows the author to recall

definition of integral over curve:∫
h(z)dz = lim

n→∞

∑
n parts

h(zj)(zj+1 − zj)

= lim
n→∞

∑
n parts

h(zj)(xj+1 − xj) + i lim
n→∞

∑
n parts

h(zj)(yj+1 − yj)

with the curve γ broken-up into n parts as shown on page 103



2 kinds of anti-derivatives

I anti-derivatives are important because of the FTC
I there are two kinds of anti-derivatives in R2 = C:

i a potential h(x , y) for which dh = P dx + Q dy

ii a primitive F (z) for which F ′(z) = f (z)

I h(x , y) is real-valued, while F (z) is complex-valued
I suppose D is a star-shaped domain, so D is open, connected,

and has no holes (simply-connected)
◦ a potential exists if P(x , y) and Q(x , y) satisfy ∂Q

∂x −
∂P
∂y = 0, so that

P dx + Q dy is closed
◦ a primitive exists if f (z) is analytic, so Cauchy-Riemann equations

apply



easy anti-derivative example: type i

I for a type i example, consider

P dx + Q dy = ex cos y dx − ex sin y dy

I it is closed because ∂Q
∂x −

∂P
∂y = −ex sin y + ex sin y = 0

I we find a potential h(x , y) by finding anti-derivatives one variable
at a time, first using the idea that ∂h

∂x = P and then using ∂h
∂y = Q:

h(x , y) = ex cos y + r(y)

−ex sin y =
∂h
∂y

= −ex sin y + r ′(y)

(⇐⇒ r ′(y) = 0 ⇐⇒ r(y) = C)

h(x , y) = ex cos y + C

where C ∈ R



easy anti-derivative example: type ii

I for a type ii example, consider

f (z) = ez

I then
F (z) = ez + C

is a primitive because (ez)′ = ez ; here C ∈ C
I yes, it can be this easy . . . for these underlying reasons:

◦ we already have a mental supply of one-variable anti-derivatives
◦ the complex number z = x + iy is the “right way” to combine two

real variables into one symbol, at least if you want to do algebraic
jobs like taking by-hand derivatives or computing by-hand
anti-derivatives



complex logarithms: the key facts you need

I this final slide is about section I.6, but is useful when doing
exercises from IV.1 and IV.2

I claim. all computations with the complex logarithm can be done
by these formulae:

• Log z = log |z|+ i Arg z on C \ {0}
• log z = {Log z + 2πmi : m an integer}
• elog z = z

• d
dz

(Log z) =
1
z

on C \ (−∞,0]

◦ the last fact is from the Example on page 108
I understanding these facts requires that you already understand

these functions, so review appropriately:
◦ log x for x > 0 . . . just the ordinary natural logarithm (= ln x)
◦ Arg z on C \ {0}
◦ ez on C


