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purpose

v

these slides are easier to read than the book’s text
they will help you do Assignment #7
but you still need to read the book!
o read sections .6, IV.1, IV.2, and IV.3
my goal:

if you spend time on these slides, and on the above
sections of the book, then you will find Assignment #7
doable. .. and perhaps easy

v

v

v



3 kinds of integrals over curves

> suppose v is a smooth curve in the plane R? = C

o it can be parameterized ~(t) = (x(f),y(t))fora<t<b
» suppose P(x,y), Q(x, y), and f(z) are continuous functions
» here are 3 kinds of integrals over ~:

@ / Pdx + Qdy
A f(z) dz
© [



general advice on these integrals

it is easy to get confused with these closely-related integral
concepts

the book calls both and @ “complex line integrals”, and it
gives no names to distinguish the two

@ is a Chapter lll topic . ..we already have practice

v

v

v

to keep track of the differences you will need both

o to pay attention to the notation, and
o to trust the notation to tell you what to do

v



concrete examples of all three

» let’s compute @ , @ for the same specific curve:
() = (x(0),y(t)=(t1-1), 0<t<2

» assume P(x,y) = xy and Q(x,y) = VX + y:
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» this ~ is not a closed curve, so Green’s theorem is not an option

o ...but it was not needed either



concrete examples 2

» continuing with same path ~(t), now assume f(z) = z:

/fz)dz—/f(z —dt
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» we will see that if f(Z) is analytic, as in this case, then -type
integrals are path-independent

o Cauchy’ Theorem: if - is closed and if f(z) is analytic, then
f f(z)dz=0

o in above example ~ is not closed, but answer would be the same
for another curve with same starting and ending points



concrete examples 3

» continuing with same curve ~(t), and same f(z):

© /f |dz\_/f ) iy ()/X (12 + y/ (12 dit

/O(t+/( 02V T 1dt

:&</022t—1dt+2i/02t—t2dt>
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» note |dz| = ds is “element of arclength”

» such @-type integrals are (essentially) never path-independent
even when f(z) is analytic
o only exception is when f(z) =0



summary: general forms for parameterized curves

» if y(t) = (x(1), y(f), a< t < b, is smooth or piecewise smooth,
and if P(x, y), Q(x, y), f(z) are continuous, then

0 /de+Qdy /P—dt+0dydt
/ P (x(1), y(0) X'(8) + Qx(1), ¥ (1) y' (1) et
/ dz_/f ()% ot
- / FOx() + iy (D) (X () + i () ot

ONNECIEE

= /bf(X(t)+/Y(f)) X'(8)2 +y'(t)? dt

9z
dt

» key idea: if you use the notation carefully and consistently then it
will tell you how to expand until you are integrating a function of ¢



comments, and quicker notation

» remaining slides focus on - and @-type integrals, which are
the subject of IV.1 and IV.2

» when a curve ~ is closed, tradition says to add a circle to the
integral symbol
/f(z) dz
.

o any path ~v:
%f(z) dz
Y

» writing the curve ~ as “z(t)” for “x(t) + iy(t)”, instead of
“(x(t), y(1))”, often makes computations quicker (next few slides)

o especially for —type integrals f7 f(z) dz
o note: if v is closed, and given by z(t) on a < t < b, then

o closed path ~:

z(a) = z(b)



integrals of 1 on closed paths

» easy case of over any closed curve:
b
7{ 1dz = / Z(1) dt = z(b) — z(a) = 0
¥ a

» easy case of @ over any closed curve:

f1|dz|:/b|z'(t)dt:/b,/x/(t)uyf(t)z dt — (length of )

o this integral just computes the arclength, from calculus:



easy exponential integrals on closed paths

» easy case of over the unit circle v centered at the origin:
z(t)=e€", 0 <t <2n:

27
7{ e dz = / Nz (t)dt = e® — @ =0
¥ 0

» key step « is the Fundamental Theorem of Calculus (see below)
» plus the chain rule:

d d

—ef =¢€° SO —

dz at

» the value comes out zero for any closed curve; it did not actually
matter that v was a circle

(ez(t)> pLOPI



easy exponential integrals on closed paths 2

» easy case of @ over same circle; note z(t) = e’ so
x(t) =cost, y(t) =sint:

27 .
j[eﬂdz| :/ @) /x(12 + y/(1)2 at
o 0
2m it 2m it
:/ e(e)\/sin2t+coszz‘dt:/ el®) gt
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» key step t is Mean Value Property (section IIl.4) with zy = 0 and
r=1andf(z) =ée*:

27
f(20) = 5 /0 f(z0+ re”) do

» it was important that ~ is a circle; on other closed curves the
result would be different



the complex Fundamental Theorem of Calculus

» generally on any path ~ of the form z(t) fora <t < b, if
F'(z) = f(z) then

| f(z)dz = Fz(b) - Fz(@)

~

» Proof. By chain rule,
% [F(z(1)] = F'(2()) 2'(t) = f(z(1)) Z'(1).
Thus

b b
/ f(2) dz /a f(z() (0ot = | %[F(z(t))] dit
= F(z(b)) - F(z(a)) O



—type integrals over closed paths

» by FTC on last slide, -type integrals over closed paths come
out zero under a condition
» namely: ifthere is F(z) for which F'(z) = f(z) then
]{ f(2) dz = F(z(b)) — F(z(a)) = 0
.

because z(b) = z(a) if v is closed



—type integrals over closed paths 2

» there is another justification of why these integrals are zero,
under a different condition

» namely: assume ~ is the boundary of a domain D
» also write f(Z) = u(x,y) + iv(x, y) and v(t) = (x(t), y(£))

» if f(z) is analytic in D, and on v = 9D, then
b
¢ 2 dz = [ (ubey) + vx ) + iy e
¥ a

:{%udx—vdy]+i{7§vdx+udy]
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Cauchy Rlemann

o this Cauchy’s Theorem as stated in section IV.3
o anti-derivative F(z) is never mentioned!



connection to the Mean Value Property (MVP)

» assume f(z) is analytic on some domain which includes the disk
of radius R > 0 around z,

» if curve v is a circle, i.e. z(t) = zo + r €' with r < R, then by MVP
27 )
7{ f(z)|dz| = / f(zo + re")rdt=2nrf(z)
¥ 0

» for example, on slide 12 the @-type integral was done by MVP

» by contrast, the integral with “dz” instead of “|dz|” is zero (by
chain rule or Cauchy’s Theorem):

ﬁf(z) az = |

=f(zo+re®) —f(zo+re?)=0

27
f(zo + re)ire dt



extra: the integrals at the start of section V.1

» we seem to see yet another form of integral on page 102 of the
book, namely

/h(z) dz = /h(z) dx + i/ h(z) dy
> ...a -type integral written with dz = dx + idy expanded

» nothing new or special! ... merely allows the author to recall
definition of integral over curve:

nparts
= im > h(Z)(x41 —x) +1 im > A(Z) (1~ ¥)
n parts n parts

with the curve ~ broken-up into n parts as shown on page 103



2 kinds of anti-derivatives

v

anti-derivatives are important because of the FTC
there are two kinds of anti-derivatives in R? = C:

v

(i)  apotential h(x, y) for which dh = P dx + Qdy
@ a primitive F(z) for which F'(z) = f(2)

v

h(x, y) is real-valued, while F(z) is complex-valued
suppose D is a star-shaped domain, so D is open, connected,
and has no holes (simply-connected)

2Q oP

o apotential exists if P(x, y) and Q(x, y) satisfy 57 — 5 = 0, so that
Pdx + Qdy is closed

o a primitive exists if f(z) is analytic, so Cauchy-Riemann equations
apply

v



easy anti-derivative example: type @

» for a type @ example, consider

Pdx+ Qdy = e“cosydx — e*sinydy

> itis closed because 42 — 98 = —e*siny + e*siny =0

» we find a potential h(x, y) by finding anti-derivatives one variable
at a time, first using the idea that % = P and then using g—;’ =Q:

h(x,y) = e“cosy + r(y)

—e*siny = g; =—€e"siny +r'(y)

(= r(y)=0 < r(y)=C)
h(x,y)=€e*cosy+ C

where C € R



easy anti-derivative example: type @

» for a type @ example, consider
f(z) =€

» then
F(z)=€e*+C

is a primitive because (e?) = e“; here C € C
> yes, it can be this easy ... for these underlying reasons:
o we already have a mental supply of one-variable anti-derivatives
o the complex number z = x + iy is the “right way” to combine two
real variables into one symbol, at least if you want to do algebraic
jobs like taking by-hand derivatives or computing by-hand
anti-derivatives



complex logarithms: the key facts you need

» this final slide is about section 1.6, but is useful when doing
exercises from IV.1 and IV.2

» claim. all computations with the complex logarithm can be done
by these formulae:

e lLogz=log|z|+iArgz on C\ {0}
e logz={lLogz+2rmi : man integer}
° elogz -z

d 1
dz(Logz) =7 on C\ (—o0,0]

o the last fact is from the Example on page 108
» understanding these facts requires that you already understand
these functions, so review appropriately:

o logx for x > 0 ...just the ordinary natural logarithm (= In x)
o ArgzonC\ {0}
o eonC



