Assignment #2

Due Friday, 16 September 2016, at the start of class

Please *carefully* read Chapter 4 in the textbook, Sutherland, *Introduction to Metric and Topological Spaces*.

Note that I am currently emphasizing the concepts of *limit* and *continuous* from Chapter 4. Later in the course we will return to the concepts of *least upper bound*, *greatest lower bound*, *sequences*, and the *completeness property of* \mathbb{R} , which the author has put earlier in Chapter 4. But please do read <u>all</u> of Chapter 4 now!

Do the following exercises.

Chapter 3, pages 15, Exercises:

- 3.7
- 3.8 (You are asked to prove two things. I suggest you just write separate proofs for simplicity.)

Chapter 4, pages 33–35, Exercises:

- 4.12 (*Hint*: In my version, both f and g are defined on all of \mathbb{R} , but f(x) is very trivial.)
- 4.13
- 4.14
- 4.15

Problem P2. Prove, by elementary means as shown in class, namely *without* using the continuity of any function, that

$$\lim_{x \to -1} \frac{2x+2}{x^2 - 6x - 7} = -\frac{1}{4}.$$

Problem P3. Prove, by direct use of Definition 4.29, that

$$f(x) = \frac{1}{x^2 + 2}$$

is continuous at a = 1. (That is, start the proof with "let $\epsilon > 0$ " and show constructively that δ exists so that $|x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$. A hint about this particular function is that you do not need to factor $x^2 + 2$ but that you probably do want to write x^2 in terms of the distance from a = 1.)