
Math 401 Introduction to Real Analysis (Bueler) October 10, 2013

Assignment #5
Due Monday 21 October, 2013 at the start of class

Please read sections 9, 10, 11, 12 of the textbook Elementary Anal-
ysis. Then do all of the following exercises. Turn them in on paper.

(The circled problem on your paper is the one you should also
do in LATEX and email to me at elbueler@alaska.edu.)

Exercise 9.11 (a).

Exercise 9.12.

Exercise 9.15.

Exercise 9.18 (a) and (b).

Exercise 10.2.

Exercise 10.5.

Exercise 10.6.

Exercise 10.9. (Hint on (b): Use Theorem 10.2.)

Exercise 11.3. (On this problem you don’t need to prove any of your claims.)

Exercise 11.7.
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Exercise E3. In exercise 10.9 the sequence sn is easily approximated using a
calculator. I get these values:

(1, 0.5, 1.667×10−1, 2.083×10−2, 3.472×10−4, 1.005×10−7, 8.652×10−15, 6.550×10−29, . . . )

These numbers are going to zero very fast! This exercise illustrates that a stan-
dard approximation tool is effective because the errors it makes go to zero this
fast.

(a) For a differentiable function f and a “first guess” x1, Newton’s method
approximately solves f(x) = 0 by generating a sequence (xn) from the formula

xn+1 = xn −
f(xn)

f ′(xn)
. (1)

The idea is that each successive xn is a better approximation of the exact solution
to f(x) = 0. Using the familiar derivatives facts on f(x) = x2− 5, use a calculator
or computer to apply Newton’s method to generate x2, . . . , x7 if x1 = 1.

(b) Suppose x̂ is the (exact) solution to f(x) = 0 closest to x1. The absolute
differences en = |xn − x̂| are the approximation errors from Newton’s method.
Compute e1, . . . , e6 using your calculated results from (a), and your knowledge
of the value of x̂ in (a).1

(c) In most numerical analysis books2 you will find a theorem like the follow-
ing:

Theorem. If f is twice-continuously-differentiable, if x1 is suffi-
ciently close to an exact solution x̂ of f(x) = 0, and if f(x̂) 6= 0, then
Newton’s method generates (xn) that converges to x̂. Furthermore,
if en = |xn − x̂| then

lim
n→∞

en+1

(en)2
= C where C =

|f ′′(x̂)|
|f ′(x̂)|

. (2)

Suppose f(x) = x2 − 5 and x1 = 1 as in part (a). What is C from equation (2)?
As an approximate matter, are the calculated e1, . . . , e6 from part (b) behaving as
claimed in this theorem?

(d) Suppose (sn) is a nonnegative sequence and suppose sn+1 ≤ Cs2n for some
C > 0. Prove by induction that if s1 ≤ 1/C then (sn) is a decreasing sequence.
Conclude that sn ≤ 1/C for all n.

(e) Again suppose (sn) is a nonnegative sequence and suppose sn+1 ≤ Cs2n for
some C > 0, but also assume that s1 < 1/C (strict inequality). Conclude using
Theorem 10.2 and limit theorems from section 9 that sn → 0.

1Caution. If you claim en = 0 for some n then you are claiming xn = x̂. Avoid making such a
claim unless it is true!

2For example, see page 85 of Greenbaum & Chartier, Numerical Methods: Design, Analysis, and
Computer Implementation of Algorithms, Princeton University Press 2012.


