Math 401 Introduction to Real Analysis (Bueler)

October 10, 2013

Assignment #5

Due Monday 21 October, 2013 at the start of class

Please read sections 9, 10, 11, 12 of the textbook *Elementary Analysis*. Then do *all* of the following exercises. Turn them in on paper. (The circled problem on your paper is the one you should also do in LATEX and email to me at elbueler@alaska.edu.)

Exercise 9.11 (a).

Exercise 9.12.

Exercise 9.15.

Exercise 9.18 (a) and (b).

Exercise 10.2.

Exercise 10.5.

Exercise 10.6.

Exercise 10.9. (*Hint on* **(b)**: Use Theorem 10.2.)

Exercise 11.3. (On *this* problem you don't need to prove any of your claims.)

Exercise 11.7.

Exercise E3. In exercise 10.9 the sequence s_n is easily approximated using a calculator. I get these values:

 $(1, 0.5, 1.667 \times 10^{-1}, 2.083 \times 10^{-2}, 3.472 \times 10^{-4}, 1.005 \times 10^{-7}, 8.652 \times 10^{-15}, 6.550 \times 10^{-29}, ...)$ These numbers are going to zero very fast! This exercise illustrates that a standard approximation tool is effective because the *errors* it makes go to zero this fast.

(a) For a differentiable function f and a "first guess" x_1 , Newton's method approximately solves f(x) = 0 by generating a sequence (x_n) from the formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$
(1)

The idea is that each successive x_n is a better approximation of the exact solution to f(x) = 0. Using the familiar derivatives facts on $f(x) = x^2 - 5$, use a calculator or computer to apply Newton's method to generate x_2, \ldots, x_7 if $x_1 = 1$.

(b) Suppose \hat{x} is the (exact) solution to f(x) = 0 closest to x_1 . The absolute differences $e_n = |x_n - \hat{x}|$ are the *approximation errors* from Newton's method. Compute e_1, \ldots, e_6 using your calculated results from (a), and your knowledge of the value of \hat{x} in (a).¹

(c) In most numerical analysis books² you will find a theorem like the following:

Theorem. If f is twice-continuously-differentiable, if x_1 is sufficiently close to an exact solution \hat{x} of f(x) = 0, and if $f(\hat{x}) \neq 0$, then Newton's method generates (x_n) that converges to \hat{x} . Furthermore, if $e_n = |x_n - \hat{x}|$ then

$$\lim_{n \to \infty} \frac{e_{n+1}}{(e_n)^2} = C \qquad \text{where} \qquad C = \frac{|f''(\hat{x})|}{|f'(\hat{x})|}.$$
 (2)

Suppose $f(x) = x^2 - 5$ and $x_1 = 1$ as in part (a). What is *C* from equation (2)? As an approximate matter, are the calculated e_1, \ldots, e_6 from part (b) behaving as claimed in this theorem?

(d) Suppose (s_n) is a nonnegative sequence and suppose $s_{n+1} \leq Cs_n^2$ for some C > 0. Prove by induction that if $s_1 \leq 1/C$ then (s_n) is a decreasing sequence. Conclude that $s_n \leq 1/C$ for all n.

(e) Again suppose (s_n) is a nonnegative sequence and suppose $s_{n+1} \leq C s_n^2$ for some C > 0, but also assume that $s_1 < 1/C$ (strict inequality). Conclude using Theorem 10.2 and limit theorems from section 9 that $s_n \to 0$.

¹*Caution.* If you claim $e_n = 0$ for some *n* then you are claiming $x_n = \hat{x}$. Avoid making such a claim unless it is true!

²For example, see page 85 of Greenbaum & Chartier, *Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms*, Princeton University Press 2012.