Name:

Math 253 Calculus III (Bueler)

Practice Final Exam

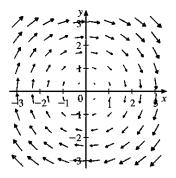
In class. 120 minutes. No calculator. 1 sheet of notes allowed. 200 points total.

- This practice exam is a bit longer than the real thing.
- The problems are generally representative but some sections will not be represented. (We covered too many sections!)
- Here I state the location of the problem in the textbook. On the real exam you must approach each problem without having the "hint" of which section it is from.
- The real exam will give you more space for your answers. Use extra paper here when needed.

1. $(\S16.1 \# 21)$ Find the gradient vector field of

$$f(x,y) = y\sin(xy)$$

2. (§16.2 #17(a)) Let **F** be the vector field shown in the figure. If C_1 is the vertical line segment from (-3, -3) to (-3, 3), determine whether $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ is positive, negative, or zero.



3. $(\S14.7 \#7)$ Find the local maximum and minimum values and saddle point(s) of the function.

$$f(x,y) = (x-y)(1-xy)$$

4. (§15.4 #9) Find the mass of the lamina that occupies the region D bounded by the curves $y = e^{-x}, y = 0, x = 0, x = 1$ and which has density $\rho(x, y) = xy$.

5. (§15.6 #13) Set up but do not evaluate the triple integral $\iiint_E 6xy \, dV$ if E is under the plane z = 1 + x + y and above the region in the xy-plane bounded by the curves $y = \sqrt{x}$, y = 0, and x = 1.

6. (§15.8 #21) Use spherical coordinates to evaluate $\iiint_B (x^2 + y^2 + z^2)^2 dV$ where B is the ball centered at the origin and with radius 5.

7. (§16.3 #13) (a) Find a function f such that $\mathbf{F} = \nabla f$. (b) Use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve.

$$\mathbf{F}(x,y) = x^2 y^3 \mathbf{i} + x^3 y^2 \mathbf{j}, \qquad C: \ \mathbf{r}(t) = \left\langle t^3 - 2t, t^3 + 2t \right\rangle, \quad 0 \le t \le 1$$

8. (§16.4 #13) Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F}(x, y) = \langle y - \cos y, x \sin y \rangle$ and C is the circle $(x-3)^2 + (y+4)^2 = 4$ oriented clockwise. (Note orientation of the curve.)

9. $(\S13.2 \# 31)$ Find parametric equations for the tangent line to the curve at the given point.

 $x = t \cos t$, y = t, $z = t \sin t$; $(-\pi, \pi, 0)$

10. (§13.4 #25) A ball is thrown at an angle of 45° to the ground. If the ball lands 90 feet away, what was the initial speed of the ball? (Use $g = 32 \text{ ft/s}^2$ for the acceleration of gravity. Simplify your answer as far as possible without a calculator.)

11. (§14.3 #49) Use implicit differentiation to find $\partial z/\partial x$ and $\partial z/\partial y$.

$$e^z = xyz$$

12. (§16.3 #3) Determine whether or not **F** is a conservative vector field. If it is, find a function f so that $\mathbf{F} = \nabla f$.

$$\mathbf{F}(x,y) = (xy+y^2)\mathbf{i} + (x^2+2xy)\mathbf{j}$$

13. $(\S13.3 \#7)$ Set up but do not evaluate an integral which computes the length of the curve.

$$\mathbf{r}(t) = \left\langle t^2, t^3, t^4 \right\rangle, \quad 0 \le t \le 2$$

14. $(\S12.3 \#17)$ Find the angle between the vectors. (An exact expression is fine. I know you do not have a calculator.)

$$\mathbf{a} = \langle 1, -4, 1 \rangle, \quad \mathbf{b} = \langle 0, 2, -2 \rangle$$

15. (§12.5 #31) Find an equation of the plane through the origin and the points (3, -2, 1) and (1, 1, 1).

16. $(\S15.3 \# 23)$ Use polar coordinates in a double integral to find the volume of a sphere of radius a. (You should know what the answer is, so the work you show is what matters.)