Ed Bueler's Reviews for Mathematical
Reviews
(listed
alphabetically)
- van den Berg, M. and Gilkey, P., Heat content asymptotics
with inhomogeneous Neumann and Dirichlet boundary conditions, Potential
Anal.
14 (2001), no. 3, 269--274
- Carron, G., Exner, P., and Krejcirik, D., Topologically
nontrivial quantum layers,
J. Math. Phys. 45 (2004), no.
2, 774--784
- Chen, Roger, On global Schrödinger kernel estimate
and eigenvalue problem, Math. Z. 227 (1998), no. 1,
69--81
- Craig, Walter, On the microlocal regularity of the
Schrödinger kernel. Partial differential equations and their
applications (Toronto, ON, 1995), 71--90, CRM Proc. Lecture Notes, 12,
Amer. Math. Soc., Providence, RI, 1997
- Dodziuk, Jozef, and Mathai, Varghese, Approximating L^2
invariants of amenable covering spaces: a heat kernel approach.
Lipa's legacy (New York, 1995), 151--167, Contemp. Math., 211,
Amer. Math. Soc., Providence, RI, 1997
- Gilkey, Peter, Heat content asymptotics. Geometric
aspects of partial differential equations (Roskilde, 1998), 125--133,
Contemp. Math., 242, Amer. Math. Soc., Providence, RI, 1999
- Gong, Fu-Zhou and Wang, Feng-Yu, Heat kernel estimates
with application to compactness of manifolds, Q. J. Math. 52
(2001), no. 2, 171--180
- Grigoryan, Alexander and Saloff-Coste, Laurent, Dirichlet
heat kernel in the exterior of a compact set, Comm. Pure Appl.
Math. 55 (2002), no. 1, 93--133
- Krejcirik, David, Quantum strips on surfaces, J. Geom.
Phys. 45 (2003), no. 1-2, 203--217
- Polterovich, Iosif, A commutator method for computation of
heat invariants, Indag. Math. (N.S.) 11 (2000), no. 1,
139--149
- Prokhorenkov, Igor, Morse-Bott functions and the Witten
Laplacian . Comm. Anal. Geom. 7 (1999), no. 4,
841--918
- Shubin, Mikhail, Classical and quantum completeness for
the Schrödinger operators on non-compact manifolds.
Geometric aspects of partial differential equations (Roskilde, 1998),
257--269, Contemp. Math., 242, Amer. Math. Soc., Providence,
RI, 1999
- Vesentini, Edoardo, Heat
conservation on Riemannian manifolds. Ann. Mat. Pura
Appl.
(4) 182 (2003), no. 1,
1–19
- Yu, Yanlin, A semi-classical limit and its applications.
Geometry and topology of submanifolds, X (Beijing/Berlin,
1999), 315--335, World Sci. Publishing, River Edge, NJ, 2000