
NUMERICAL APPROXIMATION OF A TWO–DIMENSIONAL
THERMOMECHANICAL MODEL FOR ICE FLOW

ED BUELER

Abstract. In section one I describe the model problem. It is a close copy of
[20, 22, 14, 21, 23] in the two–dimensional case.

Several finite difference schemes for the decoupled continuity equation are com-
pared in the second section. An incomplete “experimental” comparison is given.
Matlab codes for several methods are given (iceA.m). [Latrice Bowman [1] will
be continuing with more sophisticated comparisons of more sophisticated methods.
Also, careful consideration of the local truncation error of some of these methods
is needed.] Based on the tentative results of section 2, and on my understanding
of the literature, a semi–implicit “type II” method (“method 4”) is fixed upon for
treating the continuity equation in sections 3 and 4 of these notes. However, I also
propose a semi–implicit “extrapolated diffusivity” type II method of higher order
(method 7) (iceB.m).

A finite difference “free boundary” scheme for the temperature equation is de-
scribed in section three. It avoids the Jenssen [15] change of variables, and in this
sense the free–boundary nature of the problem for temperature is respected and
not traded for a singular temperature equation. I do a first experiment in which
heat flows only in an isolated column (i.e. there is no horizontal advection). See
iceC.m.

In section four a scheme for the coupled equations is described. That is, the
continuity and temperature equations are solved simultaneously and are coupled
through the Arrhenius relation. Advection in both the horizontal and vertical di-
rections is included, as is a dissipation heat source and the appropriate basal and
surface temperature boundary conditions. A semi–implicit method computes only
the heat conduction term implicitly, giving stability. In fact, no stability problems
are observed which do not already arise in the uncoupled continuity equation. The
vertical grid is allowed to have any given (unequal) spacing. Second–order upwind-
ing in both vertical and horizontal is used for the advection terms. A Matlab code
(iceD.m) and the outputs of several numerical experiments are given.

Date: August 23, 2002. Address: Dept. Math. Sciences UAF, Fairbanks AK 99775. Email :

ffelb@uaf.edu.

1



2 ED BUELER

Contents

1. The mathematical model 3
2. Choices: numerical methods for the continuity equation 4
3. The free boundary value problem for T : A first experiment 13
4. Numerical solution method for the coupled equations 16
References 23
Appendix A. Analytical steady solution to the continuity equation 24
Appendix B. Maximum principles for finite difference approximations to

diffusion equations. 25
Appendix C. Finite differences on not–equally–spaced grids 29
Appendix D. Computations involving the “local diffusivity rate” δ 31
Appendix M. Matlab codes and outputs 32
iceconstants.m code 32
iceA.m code 33
iceB.m code 37
iceC.m code (and some outputs) 39
iceD.m code 44
arr.m code 48
pentaT.m code 48
upwindhor.m code 49
upwindvert.m code 50
vintlist.m code 51



2D THERMOMECHANICAL MODEL FOR ICE FLOW 3

1. The mathematical model

I make the following physical assumptions, corresponding roughly to the two–
dimensional EISMINT [14, 21, 23] experiment but with thermomechanical coupling.
The assumptions are also informed by [20, 22] and [10, 19, 27] generally. Though the
equations are quite simplified, I claim (or at least, hope) that the resulting mathe-
matical model still contains the representative structure of any reasonable cold and
shallow thermomechanical model for ice [11, 6].

(i) Flow is only in the horizontal (x) and vertical (z) directions;
(ii) flow occurs only by horizontal shear stress and a nonlinear Glen flow law [5]

relates the stresses and strain rates;
(iii) temperature change is by conduction in the vertical direction, by advection

in vertical and horizontal, and by dissipation of flow as heat energy;
(iv) ice is incompressible;
(v) a Arrhenius relation determines the coefficient in the Glen flow law [27] as a

function of temperature;
(vi) the thickness is held zero at the two ends of an interval (i.e. fixed margin);
(vii) the bed is flat, nondeformable and at zero elevation; the contribution of ice

melt to vertical velocity at the base is ignored and thus vertical velocity at
the base is assumed zero;

(viii) the snow accumulation rate is constant;
(ix) no sliding occurs at the base;
(x) the temperature at the surface increases as the cube of the distance from the

center;
(xi) and the temperature boundary condition at the base is the geophysical heat

flux.

The unknown functions are (notation roughly follows [27])

h(x, t) surface elevation (m) [= thickness by (vii)],

T (x, z, t) temperature (K),

u(x, z, t) horizontal component of velocity (m/s),

w(x, z, t) vertical component of velocity (m/s).

Here x ∈ [−L,L], z > 0, t ≥ 0. The following equations correspond roughly to items
(i) through (xi) above:

∂h

∂t
= B − ∂

∂x

(∫ h

0

u dz

)
(1)

u = −2(ρg)n
∣∣∣∣∂h∂x

∣∣∣∣
n−1

∂h

∂x

∫ z

0

A(h− ζ)n dζ + ub(2)
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∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
=

k

ρCp

∂2T

∂z2
+
g(h− z)
Cp

∣∣∣∣∂h∂x ∂u∂z
∣∣∣∣(3)

∂u

∂x
+
∂w

∂z
= 0(4)

A = A0 exp

(−Q
RT

+
3c

(Tr − T )κ
)

(from Hooke [9])(5)

h(−L, t) = h(L, t) = 0, L = 750km(6)

wb = w(x, 0, t) = 0(7)

B = 0.3
m

a
= 9.51× 10−9m

s
(ice–equivalent rate)(8)

ub = u(x, 0, t) = 0(9)

T (x, h, t) = 239 + (8× 10−8)|x|(10)

∂T

∂z
(x, 0, t) = −G

k
if T (x, 0, t) ≤ T̃ (x, 0, t), and otherwise(11)

T (x, 0, t) = T̃ (x, 0, t) where T̃ (x, z, t) = Tr − β(h− z)
The function T̃ (x, z, t) is the melting temperature of ice at depth. The constants

appearing above have the following values ([14] and [27], pp. 16, 180):

ρ = 910
kg

m3
(density of ice) R = 8.321

J

mol K
(gas constant)

g = 9.81
m

s2
(acceleration of gravity) κ = 1.17

k = 2.10
J

m K s
(thermal conductivity of ice) c = 0.16612Kκ

Cp = 2009
J

kg K
(specific heat capacity of ice) Tr = 273.39K

A0 = 2.948× 10−9 1

Pa3s
G = .042

J

m2s
(geothermal heat flux)

Q = 7.88× 104 J

mol
(activation energy for creep) β = 8.7× 10−4K

m
(change of melting point with depth)

Note B is the ice (snow) accumulation rate and L is the half–width of the sheet.
When comparing to EISMINT results, and in sections 2 and 3 for concreteness, I

choose n = 3.
Figure 1 shows the boundary value problem for the ice thickness and temperature.

2. Choices: numerical methods for the continuity equation

For this and the next section I consider the decoupled system which follows from
the replacement of (5) by the assumption:

Temporary Assumption 1 (Sections 2, 3 only). The flow parameter A is assumed
constant. It is given the value 10−16 Pa−3a−1 which is the EISMINT [14] value.
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Figure 1. Region and boundary conditions for h, T, u and v.

I also assume for this section that n = 3.
These assumptions simplify the comparison of numerical methods for the continuity

equation (1).
Let α(x, t) =

∣∣∂h
∂x
(x, t)

∣∣ be the surface slope. By assumption 1, both u and w can
be found from the geometry (i.e. h and ∂h

∂x
) alone. In particular,

(12) u = −2(ρg)3Aα2∂h

∂x

∫ z

0

(h− ζ)3dζ = 1

2
(ρg)3Aα2∂h

∂x
((h− z)4 − h4)

from (2). For the purposes of section 3, I also note:

w = −
∫ z

0

∂u

∂x
(x, ζ, t)dζ(13)

= −2(ρg)3Aα2

[
3

4

∂2h

∂x2

(
h5

5
− (h− z)5

5
− h4z

)
+ α2

(
h4

4
− (h− z)4

4
− h3z

)]
from incompressibility (4) and the boundary condition w(x, 0, t) = 0 in (7). Note
that with the decoupling assumption 1, the value of w is immaterial for modelling h
though it is needed for modelling T .
From (12),∫ h

0

u dz =
1

2
(ρg)3Aα2∂h

∂x

(∫ h

0

(h− z)4 − h4 dz

)
= −2

5
(ρg)3Aα2∂h

∂x
h5,

which is a familiar expression for ūh where ū is the vertically–averaged velocity. Thus
(1) becomes a “nonlinear diffusion equation” form of the continuity equation

(14)
∂h

∂t
= B +

∂

∂x

(
D
∂h

∂x

)
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where

D(x, t) =
Γ

5
α2h5 and Γ = 2(ρg)3A.

I regard D as a “diffusivity coefficient” though this is only a heuristic label because
D depends on h. Note D is positive if and only if hx �= 0 and h > 0. Thus the
boundary where the thickness goes to zero and ridges where the slope goes to zero
should be regarded as singular points for equation (14), and presumably for the
general case (1) as well.
The goal for this section1 is to describe, analyze and experiment with some choices

of finite difference methods for the initial boundary value problem consisting of (14),
(6) and some initial condition. Convenient initial conditions for preliminary experi-
ments include h(x, 0) = 0 or h(x, 0) = hexact(x) where hexact is the analytical steady
solution described in appendix A.
See [17, 18, 24, 25, 26] for general information about finite difference schemes. I

think [24], chapter 19, is the most accessible introduction. I think [25] is the most
complete reference.
Let xj = −L + (j − 1)∆x be a grid for x (j = 1, . . . , Nx + 1 where Nx∆x = 2L).

Let 0 ≤ t ≤ tend and tl = 0 + (l − 1)∆t (l = 1, . . . ,Mt + 1 where Mt∆t = tend).
2 Let

hj,l be an approximation to h(xj, tl) and Dj,l be an approximation to D(xj, tl).

Method 1 (Explicit, “type I”). Inspired by the suggestions of van der Veen [27],
approximate (14) by

(15)
hj,l+1 − hj,l

∆t
= B +

1

∆x

(
D̄j+1/2,l

(
hj+1,l − hj,l

∆x

)
− D̄j−1/2,l

(
hj,l − hj−1,l

∆x

))
where

(16) D̄j+1/2,l =
Γ

5

∣∣∣∣hj+1,l − hj,l

∆x

∣∣∣∣
2 (
hj+1,l + hj,l

2

)5

and similarly for D̄j−1/2,l. The “diffusivity” approximation (16) is the “type I” ap-
proximation referred to in EISMINT [14].
It is not obvious that equations (15), (16) produce a method with local truncation

error O(∆x2,∆t) as ∆x,∆t → 0, but that is the case. Indeed, the precise local
truncation error claim is that[

∂h

∂t
−B − ∂

∂x

(
D
∂h

∂x

)]
xj ,tl

= [approximation (15) and (16)] +O(∆x2,∆t)

where I suppose hj,l+1 = h(xj, tl+1), hj,l = h(xj, tl), etc., and where the bracketed
expression on the right is fully expanded as a function of {hj+1,l, hj−1,l, hj,l, hj,l+1}.

1The project goal for Latrice [1] is to extend this analysis and comparison to the more sophisti-
cated methods.

2The indexing starting with j = 1, l = 1 matches the Matlab convention.
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I was only able to verify this by using Mathematica to manipulate the Taylor ex-
pansions. On the other hand, the combination of (15), (16) is symmetric in the
index j (around the point xj) so second–order–in–space performance is not surpris-
ing once one determines that the method is consistent (i.e. that the zeroth order term
is correct).
Figure 2 shows the “stencil” of the method. Note the (at least notional) “staggered

grid”. Open circles are used to indicate the new (unknown) values.

Figure 2. Method 1 for (14).

Method 2 (Explicit, “type II”). Further inspired by [27, 14], approximate (14) by

(17)
hj,l+1 − hj,l

∆t
= B +

1

∆x

(
Dj+1/2,l

(
hj+1,l − hj,l

∆x

)
−Dj−1/2,l

(
hj,l − hj−1,l

∆x

))
but approximate Dj+1/2,l by

(18) Dj+1/2,l =
1

2

(
D∗

j+1,l +D
∗
j,l

)
and

(19) D∗
j,l =

Γ

5

∣∣∣∣hj+1,l − hj−1,l

2∆x

∣∣∣∣
2

h5
j,l.

The “diffusivity” approximation (18), (19) is the “type II” approximation referred to
in [14].
Methods 1 and 2 are easy to program and easy to generalize to three dimensions

because they are explicit. Also, because they are explicit and one step, their accuracy
is limited to first order in time (i.e. O(∆t)). One should consider the possibility of
multistep explicit schemes, with the obvious caveat that such schemes are less stable
for stiff problems. The continuity equation for ice flow, as a “nonlinear diffusion”
presumably generates stiff systems when the spatial terms are discretized.
Figure 3 shows the stencil, which emphasizes that this explicit method actually

depends on five values of h at the current time. In fact, this raises an extremely
important issue, namely, that more boundary conditions seem necessary for type II.
In particular, D∗

1,l and D
∗
Nx+1,l, which are located at the boundaries x = −L and
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x = L, need to be given values. In the analytical steady solution one sees that
D(x = ±L) = 0 (see appendix A), and this is why I have used D∗ = 0 as a boundary
condition. For type I schemes this is not an issue, as only a boundary condition on
h is needed. A more sophisticated condition might be required at the boundary in
the future, perhaps by calculating the boundary D by type I even if all others are
calculated by type II.

Figure 3. Method 2 for (14).

Method 3 (Semi–implicit, “type I”). For greater stability one may approximate (14)
by
(20)
hj,l+1 − hj,l

∆t
= B +

1

∆x

(
D̄j+1/2,l

(
hj+1,l+1 − hj,l+1

∆x

)
− D̄j−1/2,l

(
hj,l+1 − hj−1,l+1

∆x

))
where D̄j+1/2,l, D̄j−1/2,l are calculated by (16). Note that the h terms on the right are
at time tl+1 but that the “old” values of D̄ are used. Thus the label semi–implicit.
Experience with the heat/diffusion equation motivates such implicit treatment.

Any description of numerical methods for PDEs ([24] chapter 19 is easy to read)
includes an analysis of the “fully implicit” method

uj,l+1 − uj,l

∆t
= D

uj+1,l+1 − 2uj,l+1 + uj−1,l+1

∆x2

for the diffusion equation
ut = (Dux)x

where D > 0 is assumed constant. One learns that the fully implicit method is
unconditionally stable, that is, that time steps ∆t of any size may be taken, and
will affect accuracy but not cause explosion of spurious high–frequency modes. A
related analysis concludes that the fully implicit method for the nonconstant–diffusion
equation

ut = (D(x, t)ux)x
is unconditionally stable (exercise 2.8 of [17]; see also appendix B). A nonlinear
diffusion equation of the form

ut = (D(u, ux)ux)x
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which is not directly handled by the previous linear theory.
In any case, figure 4 shows the stencil of method 3, which emphasizes that “h is

computed implicitly but the diffusivity is computed explicitly”.

Figure 4. Method 3 for (14).

Method 4 (Semi–implicit, “type II”). One may also approximate (14) by
(21)
hj,l+1 − hj,l

∆t
= B +

1

∆x

(
Dj+1/2,l

(
hj+1,l+1 − hj,l+1

∆x

)
−Dj−1/2,l

(
hj,l+1 − hj−1,l+1

∆x

))
where Dj+1/2,l, Dj−1/2,l are computed by the “type II” method, equations (18), (19).
Figure 5 shows the stencil.

Figure 5. Method 4 for (14).

The following table compares the empirical stability of methods 1,2,3 and 4. These
results are from iceA.m, shown in appendix M. In most cases the table gives the
largest whole number value (in years) of the stepsize ∆t for which the respective
method gives empirical stability. If that stepsize is less than one year, the best tenth
is given. Empirical stability is typically determined by noting diffusivity values in
excess of 1.5 times the maximum steady state value at any time during a 25000 year
run. In some cases, “instability” was determined by dramatically–in–error diffusivity
profile. Grids of Nx = 30, 100, 200 values of x are compared. The runs use the
analytical steady state solution (see appendix A) to the continuity equation as the
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initial condition. Thus this experiment is for stability around the steady state only
(see appendix B). The computation time in seconds on my machine (Pentium III at
800 Mhz; Matlab version 5.3) is given in brackets next to the critical value of ∆t.
These times should be taken as very general indications only.

Nx = 30 Nx = 100 Nx = 200
Method 1 10 [0.77] .8 [13.4] (no run)
Method 2 30 [0.27] 2 [5.88] .5 [37.3]
Method 3 34 [0.93] 2 [27.9] .6 [160]
Method 4 320 [0.11] 26 [2.19] 5 [18.8]

In producing this table I noted that, and [14] also mentions that, the type I methods
give a slight over–estimate and the type II methods give a somewhat greater under–
estimate of the steady state profile h(x). An ad hoc average of the type I and type
II is possible. For instance, by taking (0.8 type I + 0.2 type II) one gets greater
accuracy than either method, but the stability is essentially the same as the type I
method. It is also possible to use type I differencing near the boundary and type II
in the interior to get more accuracy and still keep the stability of the type II method.
(These schemes are options in iceA.m.)
Methods 5 and 6 which follow have not yet been tested. They involve Newton

iteration and this is a serious–but–not–insurmountable complication (see [1]).

Method 5 (Fully–implicit, type I, “Crank–Nicolson”). This is the method first used
(I believe) for ice flow by Mahaffy [16]. It is O(∆x2,∆t2) as ∆x,∆t → 0 according
to [16]. One approximates (14) by

hj,l+1 − hj,l

∆t
= B+(22)

1

2∆x

(
D̄j+1/2,l

(
hj+1,l − hj,l

∆x

)
− D̄j−1/2,l

(
hj,l − hj−1,l

∆x

))
+

1

2∆x

(
D̄j+1/2,l+1

(
hj+1,l+1 − hj,l+1

∆x

)
− D̄j−1/2,l+1

(
hj,l+1 − hj−1,l+1

∆x

))

where D̄j+1/2,l, etc., are computed by (16). The presumed advantage of this method
is its higher accuracy and the fact that for the corresponding linear diffusion equation
it is unconditionally stable.
Figure 6 shows the stencil. Exactly because D is computed at the new time tl+1,

nonlinear equations must be solved. This is typically done by Newton’s method [24].
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Figure 6. Method 5 for (14).

Method 6 (Fully–implicit, type II, “Crank–Nicolson”). Approximate (14) by

hj,l+1 − hj,l

∆t
= B+(23)

1

2∆x

(
Dj+1/2,l

(
hj+1,l − hj,l

∆x

)
−Dj−1/2,l

(
hj,l − hj−1,l

∆x

))
+

1

2∆x

(
Dj+1/2,l+1

(
hj+1,l+1 − hj,l+1

∆x

)
−Dj−1/2,l+1

(
hj,l+1 − hj−1,l+1

∆x

))
where Dj+1/2,l, etc., are computed by (18), (19).
Figure 7 shows the stencil. One sees that significantly greater complication fol-

lows from the type II diffusivity approximation in this case. That is, a nonlinear
“pentadiagonal” system must be solved in the two–dimensional case. In the three
dimensional case using ADI techniques this would be even more complicated (though
still conceivable). This method might give stability benefits over method 5. That
would be its only justification.

Figure 7. Method 6 for (14).

Method 7 (Semi–implicit, extrapolated diffusivity, “type II”). This method is best
explained by starting with a related model equation. Suppose D(t) is a given positive
and differentiable function and suppose one wishes to solve

(24) ut = (D(t)ux)x.
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For this linear equation the previous six methods reduce to three, that is, explicit,
fully implicit and Crank–Nicolson. The last of these methods is the most accurate, of
course. The fully implicit and Crank–Nicolson methods are easy to use because D(t)
can be evaluated at t = tl+1 and t = tl+1/2 = tl+

1
2
∆t respectively. Recall that Crank–

Nicolson has local truncation error O(∆x2,∆t2) because it is symmetrical around the
point (xk, tl+1/2).
Suppose, however, that one is only able to use the values of D(t) at t = tl and

possibly previous times—an artificial restriction in the current context, but more–
or–less the case for the ice continuity equation. From Taylor series one sees that

D(tl+1/2) =
3

2
D(tl)− 1

2
D(tl−1) +O(∆t

2).

That is, one can extrapolate to find D(tl+1/2) using the previous two grid values
D(tl), D(tl−1). This extrapolated value can be used in Crank–Nicolson in place of
the exact value D(tl+1/2).
In the nonlinear ice flow case where D = D(h, hx), the exact value is not known

but must be approximated. However, there is a big difference in difficulty between
solving for D at the future time (as in methods 5 and 6) to approximate D and using
an equally accurate linear combination of the older values (as in the current method).
If one combines this extrapolation idea with Crank–Nicolson evaluation of the

second spatial derivative of h in the ice continuity equation, one gets a new method,
as follows. It is as accurate as full Crank–Nicolson but does not have the difficulty of
solving nonlinear equations.3 On the other hand it can be expected to be less stable.
Written out in detail one has:

hj,l+1 − hj,l

∆t
= B+(25)

1

2∆x

(
Dj+1/2,�

(
hj+1,l − hj,l

∆x

)
−Dj−1/2,�

(
hj,l − hj−1,l

∆x

))
+

1

2∆x

(
Dj+1/2,�

(
hj+1,l+1 − hj,l+1

∆x

)
−Dj−1/2,�

(
hj,l+1 − hj−1,l+1

∆x

))
where “$” represents extrapolation to tl+1/2 and thus

(26) Dj+1/2,� =
3

2
Dj+1/2,l − 1

2
Dj+1/2,l−1.

Of course, Dj+1/2,l, etc., are calculated by (18) for this type II scheme but could
equally well be done by type I.
I emphasize that the extrapolation is done only for the “diffusivity” D. Equation

(25) is solved in the usual tridiagonal manner. The three dimensional version of this
method is compatible with an ADI scheme. Clearly two previous grids of D values

3The local truncation error needs to be tediously calculated, or rather with Mathematica. It is
O(∆x2,∆t2), I believe.



2D THERMOMECHANICAL MODEL FOR ICE FLOW 13

must be kept, but this is a small price to avoid Newton–Raphson, if that turns out
to be possible from a stability point of view.
See the stencil in figure 8. Again, a related type I method is also possible.
The following table continues the comparison of stability. These results are from

iceB.m in appendix M. Compare to the table on page 10.

Nx = 30 Nx = 100 Nx = 200
Method 7 33 [1.10] 2 [32.9] .6 [173]

Figure 8. Method 7 for (14).

3. The free boundary value problem for T : A first experiment

It is clear that equations (1) through (11) can be collected together in a somewhat
nicer package, and I will do so in the next section.
For the moment there is a boundary issue to settle. Note that the ice surface

boundary condition (10) is not along a fixed surface in x, z space, but rather along
the graph of z = h(x, t) which is determined by the continuity equation (1) which is
coupled to the temperature equation (3) through the Arrhenius relation (5). In other
words, T solves a free boundary problem.4

This fact has been widely, but not universally, recognized, I think. D. Jenssen
[15] introduced a change of vertical coordinate which, in essence, exchanges the free

4In fact h also solves a free boundary problem in general, but in this “fixed margin” experiment
I take the boundary at fixed location.
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boundary nature of the problem for a more singular temperature equation. In par-
ticular, if H is the thickness of the sheet and if

s =
h− z
H

then (3) becomes

∂T

∂t
+ (advection) =

k

ρCp

1

H2

∂2T

∂s2
+ (heat source),

on the fixed domain {−L ≤ x ≤ L, 0 ≤ s ≤ 1}.
Note that the vertical diffusivity coefficient is then unbounded as H → 0 at the

boundary of the ice sheet. I suspect this is a (possibly the?) source of “instability
in solving the temperature equation.” Nonetheless, apparently usable schemes based
on the Jenssen change do exist, for instance [6, 15, 22, 27]. K. Hutter, at least, is
well–aware of the free boundary nature of the model. See [12] and the references
therein.5

I have an idea on how to deal, in practice, with this free boundary problem in
a rather simple manner. To explain this in a convenient context, and for a first
experiment, I make an additional assumption for this section only :

Temporary Assumption 2 (Section 3 only). The horizontal advection term u∂T
∂x

in (3) is replaced by zero.

This is not a good physical approximation, but rather allows the consideration of
temperature in a single column of the ice in isolation from the others. See section 7.2
of [27]. I will not make this assumption in section 4.
Recall that assumption 1 of the previous section means h, u, and w can be found

independently of T . I will use the time–dependent values of h, u, w in solving for T
in the column.
From these assumptions, T = T (x, z, t) satisfies

∂T

∂t
+ w

∂T

∂z
=

k

ρCp

∂2T

∂z2
+
g(h− z)
Cp

∣∣∣∣∂h∂x ∂u∂z
∣∣∣∣ .

Let x̄ be a fixed horizontal position. The above equation corresponds to a column at
x̄ which is thermally–isolated because there is no horizontal conduction or convection
(advection). Only vertical advection, vertical conduction, and a dissipation–driven
heat source are included.
Let T (z, t) = T (x̄, z, t), h(t) = h(x̄, t), α(t) =

∣∣∂h
∂x
(x̄, t)

∣∣, u(z, t) = u(x̄, z, t), and
w(z, t) = w(x̄, z, t) for the rest of this section. Let Σ(z, t) = g(h−z)

Cp
α

∣∣∂u
∂z

∣∣, KT =
k

ρCp
,

and Ts = 239 + 8× 10−8|x̄|.
5I do not know what numerical methods have been used by his group, though it seems that R.

Greve’s program SICOPOLIS [6] does use the Jenssen change of coordinate.
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I consider the problem:

∂T

∂t
+ w(z, t)

∂T

∂z
= KT

∂2T

∂z2
+ Σ(z, t),(27)

T (h(t), t) = Ts,(28)

∂T

∂z
(0, t) = −G

k
if T (0, t) ≤ T̃ (o, t) and otherwise T (0, t) = T̃ (0, t)(29)

where T̃ (z, t) = Tr − β(h(t)− z).
The outstanding fact about this boundary value problem for temperature is that the
Dirichlet boundary condition (28) is at a position which moves. That position is
derived from the simultaneous solution of the continuity equation (14).
Note that (27) is otherwise a classical convection diffusion equation in one dimen-

sion, and much literature applies to its solution [17, 25].
Now for my idea. To avoid the Jenssen coordinate change I suppose T (z, t) is

defined for t ≥ 0 and 0 ≤ z ≤ hmax where hmax is a hypothesized maximum ice
thickness. I replace the boundary condition (28) by the fixed condition

(30) T (hmax, t) = Ts.

Replace the temperature equation (27) by

(31)
∂T

∂t
+w(z, t)

∂T

∂z
(z < h(t)) = KT

∂2T

∂z2
+Σ(z, t)(z < h(t))+ω(Ts −T )(z ≥ h(t))

where “(a < b)” is one if true and zero if false (this is the Matlab style). That is, for
z < h(t), (27) holds, but for z ≥ h(t),

(32)
∂T

∂t
= KT

∂2T

∂z2
+ ω(Ts − T ).

I keep the vertical diffusion in (32) in order to smooth the transition of T between
the z < h and z ≥ h regions. (The inclusion of this term is likely not essential.)
Now, ω > 0 is a new parameter, and is supposed large enough to rapidly decay T

to the value Ts. How large should ω be? I choose the time step ∆t as a half–life for
Ts−y in the “Newton’s law of cooling” equation dy

dt
= ω(Ts−y). That is, e−ω∆t = 1/2

or ω = ln 2/∆t. Clearly (32) is a diffusive version of Newton’s law of cooling.
I discretize the z direction by zk = 0 + (k − 1)∆z for k = 1, . . . , Nz + 1 where

∆z · Nz = hmax. Vertical spacing is uniform for simplicity but this is generalized
in the next section. Let Tk,l be our approximation of T (zk, tl). Equation (31) is
approximated semi–implicitly by

Tk,l+1 − Tk,l

∆t
+ w(zk, tl)

Tk+1,l − Tk−1,l

2∆z
(zk < h(tl))(33)

= KT
Tk+1,l+1 − 2Tk,l+1 + Tk−1,l+1

∆z2
+ Σ(zk, tl)(zk < h(tl))

+ ω(Ts − Tk,l+1)(zk ≥ h(tl)).
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Note that the diffusion and Newton’s law terms are treated implicitly. Clearly a
higher order implicit scheme is reasonable and will not involve a great increase in
work because (31) is linear in T .
The basal boundary condition on T is taken as the rule: If T1,l < T̃ (0, tl) or

T2,l−T1,l

∆z
< −G

k
then

T2,l−T1,l

∆z
= −G

k
and otherwise T1,l = T̃ (0, tl). Also, at the end

of the step if any Tk,l+1 is found to exceed T̃ (zk, tl) it is set to that value. This last
accommodation to the nature of water is ad hoc and should be replaced by a “Stefan
boundary condition at the free cold–temperate interface.” See [6, 11].
A Matlab code iceC.m based this method appears in appendix M with represen-

tative output. It solves the continuity equation (14) by the semi–implicit type II
method 4. That is, on the right side of ∂h

∂t
= B+ ∂

∂x

(
D ∂h

∂x

)
, D is type II evaluated at

the old time step but h is evaluated at the new time step. Qualitatively reasonable
and stable results are found. It is possible to choose ∆t up to approximately 300 years
in a 25000 year run with ∆x = 50 km, and still get apparent stability. I believe, in
other words, that the temperature model is included at no stability cost at all. It is
the continuity equation which has an intrinsic stability limit on the time step [8].

4. Numerical solution method for the coupled equations

I now return to equations (1) through (11) and seek a numerical solution to the
coupled system. The decoupling and simplifying assumptions of the previous section
are dropped. Also, the parameter n will be an adjustable parameter.
A reorganization of the equations is appropriate. In particular, it is useful to

identify a “diffusivity” analogous to D in section 2.
Let Γ0 = 2(ρg)

n. Let α(x, t) =
∣∣∂h
∂x
(x, t)

∣∣ as before. For 0 ≤ z ≤ h(x, t), let
δ = fΓ0A(T )α

n−1(h− z)n.
Note δ ≥ 0 and δ > 0 when ∂h

∂x
�= 0 and z < h(x, t). I introduce f as a flow

enhancement factor which may be useful for adjusting the model to better agreement
with experimentally observed overall dimensions for ice sheets.
I claim δ can be treated somewhat analogously to D as in section 2. It may be

called a “local diffusivity rate”, which is justified by the following rewriting of the ice
continuity equation:

∂h

∂x
= B +

∂

∂x

(
D
∂h

∂x
− ubh

)
where D(x, t) =

∫ h(x,t)

0

δ(x, ζ, t)(h(x, t)− ζ) dζ.

The velocities u, w and the dissipation heat source Σ = g
Cp
(h− z)α ∣∣∂u

∂z

∣∣ can all be
written in terms of δ or integrals of δ, as follows. See appendix D for the calculations
which produce these formulas. Note that only the form of δ is affected by choice
of flow law (e.g. choice of n) and by the form of the Arrhenius relation, which is
computed by the function arr.m in appendix M.
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I claim equations (34) through (44) are equivalent to (1) through (11):

δ(x, z, t) = fΓ0A(T (x, z, t))α(x, t)
n−1(h(x, t)− z)n,(34)

I(x, z, t) =

∫ z

0

δ(x, ζ, t) dζ, J(x, z, t) =

∫ z

0

δ(x, ζ, t)(z − ζ) dζ,(35)

u(x, z, t) = −∂h
∂x
(x, t)I(x, z, t) + ub(x, t); ub = 0,(36)

w(x, z, t) =
∂

∂x

(
J(x, z, t)

∂h

∂x
(x, t)

)
− z∂ub

∂x
(x, t) + wb(x, t); wb = 0,(37)

Σ(x, z, t) =
g

Cp

α(x, t)2(h(x, t)− z)δ(x, z, t),(38)

D(x, t) = J(x, h(t), t),(39)

∂h

∂t
= B +

∂

∂x

(
D
∂h

∂x
− ubh

)
,(40)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= KT

∂2T

∂z2
+ Σ,(41)

h(−L, t) = h(L, t) = 0; L = 750 km,(42)

T (x, h, t) = Ts(x) = 239 + (8× 10−8)|x|(43)

∂T

∂z
(x, 0, t) = −G

k
if T (x, 0, t) ≤ T̃ (x, 0, t), and otherwise(44)

T (x, 0, t) = T̃ (x, 0, t) where T̃ (x, z, t) = Tr − β(h− z).
Clearly (34) through (39) are computations done at each step to solve the main
equations (40), (41) subject to the boundary conditions (42), (43), (44).
For the continuity equation (40) I choose the same simple and stable method

as was chosen in section 3. That is, method 4 which is semi–implicit and type
II. Again, because this is type II, I need to augment the system above with the
boundary conditions D(−L, t) = D(L, t) = 0. Other methods are obviously possible
and appropriate.
Let xj = −L+(j−1)∆x, j = 1, . . . , Nx+1, with ∆x·Nx = 2L. Let tl = 0+(l−1)∆t,

l = 1, . . . ,Mt + 1 with ∆t ·Mt = tend. Let hj,l be the approximation to h(xj, tl). Let
δj,l(z) denote the approximation to δ(xj, z, tl) and similarly for I, J , u, w and Σ.
Equations (34) through (40) then are easily discretized in the horizontal and time

dimensions: for j = 2, . . . , Nx

δj,l(z) = fΓ0A(Tj,l(z))

∣∣∣∣hj+1,l − hj−1,l

2∆x

∣∣∣∣
n−1

(hj,l − z)n,(45)

Ij,l(z) =

∫ z

0

δj,l(ζ) dζ, Jj,l(z) = zIj,l(z)−
∫ z

0

δj,l(ζ)ζ dζ,(46)
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uj,l(z) = −hj+1,l − hj−1,l

2∆x
Ij,l(z),(47)

wj,l(z) =
1

2∆x2

[
(Jj+1,l(z) + Jj,l(z))(hj+1,l − hj,l)(48)

− (Jj,l(z) + Jj−1,l(z))(hj,l − hj−1,l)
]
,

Σj,l(z) =
g

Cp

∣∣∣∣hj+1,l − hj−1,l

2∆x

∣∣∣∣
2

(hj,l − z)δj,l(z),(49)

D∗
j,l = Jj,l(hj,l); Dj+1/2,l =

1

2

(
D∗

j,l +D
∗
j+1,l

)
,(50)

hj+1,l − hj,l

∆t
= B +

1

∆x2

[
Dj+1/2,l (hj+1,l+1 − hj,l+1)−Dj−1/2,l (hj,l+1 − hj−1,l+1)

]
.

(51)

For j = 1 and j = Nx + 1, D
∗ (but not δ!) may be taken as zero because the

thickness h is zero.
For the vertical discretization, it is worthwhile to add a level of sophistication

to that of the previous section. That is, to allow a not equally–spaced (“general”)
grid. In this I follow Payne & Dongelmans [22] except that I do not make the
Jenssen change of variables. See appendix C of the current paper for the deriva-
tion of finite difference schemes for general grids. In particular, suppose hmax > 0
is a fixed maximum thickness of the ice sheet. Suppose {zk}Nz+1

k=1 are given with
0 = z1 < z2 < · · · < zNz+1 = hmax. For instance, [22] use the eleven levels
{zk} = {0.00, 0.02, 0.05, 0.10, 0.17, 0.25, 0.40, 0.55, 0.70, 0.85, 1.00} (in the context of
the Jenssen change of variables).
I need to suppose that integrals can be approximately computed in the verti-

cal direction. Let Ij,k,l be an approximation to Ij,l(zk) and similarly for Jj,k,l. See
vintlist.m in appendix M for the details of the integration. For now, a trapezoid
scheme is used. More sophisticated methods are possible. Note Jj,l(hj,l) can be found
by linear interpolation of Jj,k,l and Jj,k+1,1 where zk ≤ hj,l < zk+1.
In discretizing the temperature equation (41), let Tj,k,l be the approximation to

T (xj, zk, tl). The z derivatives in (41) are approximated on the not–equally–spaced
grid. Also, the first derivatives ∂T

∂x
, ∂T

∂z
are going to be approximated by “second–order

upwinding” as in [22]. In fact, for the horizontal direction let

Up(Tk,l

∣∣j, λ) =
{
λ · (1/2)Tj−2,k,l−2Tj−1,k,l+(3/2)Tj,k,l

∆x
if λ ≥ 0,

λ · −(3/2)Tj,k,l+2Tj+1,k,l−(1/2)Tj+2,k,l

∆x
if λ < 0.

For the vertical direction let

Up(Tj,l

∣∣k, λ) =
{
λ · (approximation (C4)) if λ ≥ 0,

λ · (approximation (C5)) if λ < 0.
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The various three–point approximations are given in appendix C. “Upwinding” is
computed by upwindhor.m, upwindvert.m in appendix M.
Now let δj,k,l approximate δj,l(zk) and similarly for uj,k,l, wj,k,l, Σj,k,l, Tj,k,l. In these

terms I now discretize the temperature equation (41):

Tj,k,l+1 − Tj,k,l

∆t
+Up(Tk,l

∣∣j, uj,k,l) · (zk < hj,l) + Up(Tj,l

∣∣k, wj,k,l) · (zk < hj,l)(52)

= KT

(
approximation (C6) or (C7)

at (xj, tl+1)

)
+ Σj,k,l · (zk < hj,l)

+ ω(Ts(xj)− Tj,k,l+1) · (zk ≥ hj,l).

Compare to (33).
Of course this represents a linear system to be solved. For the interior points

k = 3, . . . , Nz − 1, each equation can be written
(53) [1 + ∆tω(zk ≥ hj,l)]Tj,k,l+1 −∆tKT [(C6) at (xj, tl+1)] = bj,k,l

where

bj,k,l = Tj,k,l −∆t(zk < hj,l)
[
Up(Tk,l

∣∣j, uj,k,l) + Up(Tj,l

∣∣k, wj,k,l)− Σj,k,l

]
(54)

+ ∆tωTs(xj)(zj ≥ hj,l)

involves only quantities known at t = tl. The k = 1, 2 and k = Nz cases differ because
they involve boundary conditions. Note that the equation at the base (k = 1) is
trivial in the warm–ice case (i.e. if Tj,1,l = T̃ (xj, 0, tl)). In the cold ice case (if

Tj,1,l < T̃ (xj, 0, tl)) the geothermal heat flux (Neumann) condition is imposed using
(C5).
In any case, for each j = 2, . . . , Nx this represents a pentadiagonal system of Nz

equations in Nz unknowns {Tj,k,l}Nz
k=1. See pentaT.m and iceD.m for the details of

implementation.
The choice of the parameter ω is as described in section 3: ∆tω = ln(2).
Consider the main time loop:

• Suppose the quantities hj,l, Tj,k,l are known at time t = tl;
• compute δj,k,l—here is where Glen flow law and Arrhenius relation appear;
• compute Ij,k,l and Jj,k,l by integration (vintlist.m);
• compute Dj+1/2,l by interpolating J ;
• compute uj,k,l, wj,k,l, Σj,k,l;
• solve the continuity equation (51), incorporating boundary conditions (42),
by a single (Nx − 1) by (Nx − 1) tridiagonal matrix solve (w. no iteration);

• solve the temperature equation (52), incorporating boundary conditions (43),(44),
by pentadiagonal means; requires Nx − 1 solves of Nz by Nz pentadiagonal
matrices;

• loop.
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Several points are worth making. Note the systems of equations are linear and
band–limited (i.e. tri– or penta–diagonal), which follows from two properties. First,
the continuity equation is approximated by a semi–implicit scheme. Methods 3 and
4 from section 2 are of this type, but so is method 7, though it is multistep and
its stability properties need to be explored. Second, the coefficients u, w, Σ of the
lower order terms in the temperature equation, which also couple the system, are
computed at the previous time step. Thus the temperature equation is computed
semi–implicitly. A “Crank–Nicolson scheme” could easily be used on the temperature
equation, as long as these coefficients are computed at previous time steps. In order
to get further accuracy benefit either a nonlinear system has to be solved or the
coefficients have to be extrapolated by a multi–step scheme.
In any case, see iceD.m in appendix M. The following are outputs are interesting

enough to include in the text.
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Figure 9. For comparison, as the Arrhenius relation A(T ) is replaced
by a constant (thus this is decoupled). Note close agreement with an-
alytical h and D profile at last time. Note n = 3 in Glen law. This is
output figure 1 from iceD.m.
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Figure 10. Same as above but coupled through the Arrhenius rela-
tion. A flow enhancement factor of f = 5 is used. Note the more
pronounced central ridge.
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Figure 11. The computed temperature field for the same case as
above. Ignor the computed temperatures above the computed h profile,
shown. Note positions A,B,C for the next figure. This is output figure
2 from the same run as above.
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Figure 12. Computed temperature profiles at positions A,B,C in the
previous figure. Valid only up to the level of the surface h, shown. This
is output figure 3 from the same run as above.
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Figure 13. This shows two variations on the previous experiment,
namely that n = 1.8 in the Glen flow law and that h ≡ 0 is the initial
condition. Again f = 5. Note that equilibrium may or may not have
been achieved by this time (t = 200, 000 years).
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Appendix A. Analytical steady solution to the continuity equation

Consider the steady–state case of (14) which, in the n = 3 case, is

(A1) 0 = B +
∂

∂x

(
D
∂h

∂x

)
, D =

Γ

5
h5

∣∣∣∣∂h∂x
∣∣∣∣
2

.

I determine h(x) and D(x) for the dual purpose of checking accuracy and building
intuition.
It appears6 that the boundary conditions which give a physically reasonable solu-

tion are h′(0) = 0 and h(L) = 0. Clearly symmetry considerations show that if h
solves (A1) with h(−L) = 0 and h(L) = 0 and if h′(0) exists then h′(0) = 0.
Integrating (A1) from 0 to x gives

0 = Bx+
Γ

5
h(x)5h′(x)3.

Integrating this from x to L gives

h(x) = C
(
L4/3 − x4/3

)3/8
, C = 23/8

(
5B

Γ

)1/8

.

Note h(0) = CL1/2 ≈ 3575.06 m. This value can be compared to the computed value
H0 from iceA.m, iceB.m, etc. See figure 9.
One gets the following analytical expression for the steady–state diffusivity:

D(x) =
ΓC7

20
x2/3

(
L4/3 − x4/3

)5/8
.

Note D is even and D(0) = 0 but D′(0) does not exist. Note D(−L) = D(L) = 0
as well. The maximum of D occurs roughly halfway between x = 0 and x = L. The
analytical value of D(L/2) ≈ 1.37396 m2

s
can be compared to numerical results. See

figure 9.
At risk of repeating myself, note D′(0) does not exist. However, Q(x) = D(x)h′(x)

is differentiable for −L < x < L. In fact,
Q(x) = −Bx

as is expected from constant accumulation.
I suppose this is an explanation for the following quandary: Methods based on

discretizing ht = B+Γh
4h4

x+
3Γ
5
h5h2

xhxx all seem to be unstable. That is, I discretize
ht = B + Dxhx + Dhxx but then have a factor of Dx, which goes to infinity as
hx → 0, multiplying hx. The empirical instability indeed “comes from near x = 0”
in running such a scheme. By contrast, the successful methods of section 2 are based

6A mystery is why h(−L) = 0, h(L) = 0 as boundary conditions do not seem to give this solution.
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on discretizing ht = (Dhx)x in that form.
7 A more convincing explanation of this

quandary is given in appendix B.
For the general n case, the above formulas become:

0 = B +
∂

∂x

(
D
∂h

∂x

)
, D =

Γ

n+ 2
hn+2

∣∣∣∣∂h∂x
∣∣∣∣
n−1

, Γ = 2(ρg)nA,

h(x) = C1

(
L

n+1
n − |x|n+1

n

) n
2n+2

, C1 = 2
n

2n+2

(
(n+ 2)B

Γ

) 1
2n+2

,

D(x) = C2|x|n−1
n

(
L

n+1
n − |x|n+1

n

) n+2
2n+2

, C2 =
ΓC2n+1

1

(n+ 2)2n−1
.

Thus h(0) = C1L
1/2 and D(L/2) = C22

−3/2
(
2

n+1
n − 1

) n+2
2n+2

L3/2.

The above formulas appear in iceconstants.m. Again, they are useful for checking
the decoupled steady state results.

Appendix B. Maximum principles for finite difference approximations

to diffusion equations.

The real title of this appendix is:

Why one has to discretize the ice flow equation in “self–adjoint” form.

In fact, by following section 2.15 of [17], I now answer a question I raised in
appendix A. Namely, if one discretizes the right side of (14), that is,

(B1)
∂h

∂t
= B +

∂

∂x

(
D
∂h

∂x

)
,

as

B +
1

∆x2

[
Dj+1/2 (hj+1 − hj)−Dj−1/2 (hj − hj−1)

]
then things seem to work well—that is, seem to be stable—even with explicit methods,
and for both type I or type II diffusivity approximation, and so on. In the ice case,
where D = D(h, hx), there are indeed stability limits (see section 2 of these notes
and [8]), but they are tolerable in practice.
On the other hand, if one rewrites (B1) in the equivalent form

(B2)
∂h

∂t
= B +

∂D

∂x

∂h

∂x
+D

∂2h

∂x2

7In practice, that is, computing numerically, Q is a relatively well-behaved function but it seems
to be the values of D which are first victims of instability. One computes D either way, since one
computes Q as −D ∂h

∂x . It is therefore worth seeing the less stable quantity and determining stability
limits from it.
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and discretizes the right side as

B +

(
Dj+1 −Dj−1

2∆x

)(
hj+1 − hj−1

2∆x

)
+
Dj

∆x2
(hj+1 − 2hj + hj−1)

then there seem to be unacceptable stability problems even if implicit methods are
used, even if the new first derivative term is dealt with by upwinding, regardless of
the type I/II choice, and so on. (For very small time steps one may be able to use
this method on the ice flow equation (B1) [1], at least for initial conditions near the
analytical steady state.)
I claim that the distinction between these two seemingly equivalent schemes can

be seen through a maximum principle. If one shows that a scheme for evolution
equations has the property that the maximum value on a grid is always achieved at
the boundary then the scheme will be stable [17]. That is, a maximum principle of
the type below is sufficient for stability.
For an example before addressing the nonlinear diffusion equation (B1), consider

the explicit method for the heat equation ut = uxx:

(B3)
uj,l+1 − uj,l

∆t
=
uj+1,l − 2uj,l + uj−1,l

∆x2
or uj,l+1 = a1uj+1,l + a2uj,l + a3uj−1,l

where a1 = R, a2 = 1− 2R, a3 = R and R =
∆t

∆x2 . Note a1 + a2 + a3 = 1. If a2 ≥ 0,
i.e. if

(B4)
∆t

∆x2
≤ 1

2
,

then

(B5) uj,l+1 ≤ max{uj+1,l, uj,l, uj−1,l}.
This follows both because all of the ai are positive and because they sum to one.
One can now easily show that the maximum value of the {uj,l} is achieved at the
boundary or as an initial value, which is the maximum principle part. What does this
have to do with stability? If (B5) holds then the classic instability which appears on
the right of figure 14 cannot occur because values at future time (uj,l+1) exceed the
past values (uj−1,l, uj,l, uj+1,l). The graph on the left has shorter time steps satisfying
(B4) and “can not” show this instability because a maximum principle holds true.
For the nonhomogeneous equation ut = B + uxx where B is constant, note v =

u − Bt solves vt = vxx. This justifies considering only the B = 0 case. Returning
to the ice continuity equation (B1), which is nonlinear, one addresses the stability
around a given solution—for instance the steady state solution—by looking at the
equation satisfied by deviation from that solution. In fact, if h solves (B1) and if
h̄ solves the steady state version (h̄t = 0 = B + (D(h̄, h̄x)h̄x)x) then the deviation
η = h− h̄ solves

∂η

∂t
=
∂

∂x

[
(D(h, hx)−D(h̄, h̄x))

∂h̄

∂x

]
+
∂

∂x

[
D(h, hx)

∂η

∂x

]
.
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Figure 14. A maximum–principle–failing instability.

Assuming a solution h is “close enough” to the steady state in this nonlinear equation
is exactly to assume that D(h, hx) − D(h̄, h̄x) ≈ 0. The equation for the deviation
then has B = 0. In any case, we assume B = 0 from now on.
For the rest of this appendix the diffusivity D is supposed to be a nonnegative

function of x and t which is bounded by some constant D̄. It does not matter if D is
known explicitly or if it depends on x, t through a functional dependence on h, hx as
in the ice equation.
I prove a maximum principle for explicit and implicit and semi–implicit cases. For

this purpose, let 0 ≤ θ ≤ 18 and discretize (B1) as

hj,l+1 − hj,l

∆t
=
1− θ
∆x2

[
Dj+1/2,l(hj+1,l − hj,l)−Dj−1/2,l(hj,l − hj−1,l)

]
(B6)

+
θ

∆x2

[
Dj+1/2,l+1(hj+1,l+1 − hj,l+1)−Dj−1/2,l+1(hj,l+1 − hj−1,l+1)

]
.

The case θ = 0 is the explicit method, θ = 1 is first–order fully implicit, and θ = 1/2
is Crank–Nicolson. Because the method for determining D is not addressed in the
current analysis, semi–implicit methods like methods 3, 4 and 7 of section 2 are
handled as are implicit methods 5 and 6.
Again it is useful to write out the method as

a0hj,l+1 = a1hj−1,l+1 + a2hj+1,l+1 + a3hj−1,l + a4hj,l + a5hj+1,l.

Assuming the hypothesis for D, all of the coefficients a0, a1, a2, a3 and a5 are nonneg-
ative without any condition on ∆t,∆x or θ. However, a4 = 1−(1−θ)RDj+1/2,l−(1−
θ)RDj−1/2,l where R =

∆t
∆x2 as before. Recalling that D̄ is a bound on the function

D, if

(B7) 1− 2(1− θ)RD̄ ≥ 0 or
∆t

∆x2
≤ 1

2(1− θ)D̄ (0 < θ ≤ 0)

8The “θ–method” is well–known in numerical PDEs. See [17].
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then (B6) implies hj,l+1 ≤ a1+a2+a3+a4+a5

a0
max{hj−1,l+1, hj+1,l+1, hj−1,l, hj,l, hj+1,l}. The

reader can check that a3 + a4 + a5 = 1 and a0 = 1 + a1 + a2. Thus

hj,l+1 ≤ max{hj−1,l+1, hj+1,l+1, hj−1,l, hj,l, hj+1,l}.
This is a maximum principle for the θ–method applied to the ice equation (B1) under
condition (B7) and the hypothesis that D is bounded and nonnegative.
This analysis shows (see [17]) that if D is bounded and if condition (B7) holds,

relating θ, ∆t, ∆x and D̄ = maxDj,l, then (B6) is a stable method. In particular,
the first–order fully implicit method, and indeed the linearized versions of methods
3 and 4, are “unconditionally stable” around the steady state. (However, there is a
nonlinear effect which appears and results in empirical instability. See [8].) On the
other hand, this analysis suggests (B7) as a quantitative stability criterion for the
explicit and Crank–Nicolson methods.
The Crank–Nicolson method is unconditionally stable for constant D (this can be

shown by Fourier analysis), but does not satisfy an unconditional maximum principle.
This shows the limitations of maximum principles as tools for predicting instability.
Finally, I return to consider the discretization of (B2), again with B = 0 and the

θ–method. This reduces to

(1 + 2RθDj,l+1)hj,l+1 = Rθ(−1
4
Dj+1,l+1 +

1

4
Dj−1,l+1 +Dj,l+1)hj−1,l+1

+Rθ(
1

4
Dj+1,l+1 − 1

4
Dj−1,l+1 +Dj,l+1)hj+1,l+1

+R(1− θ)(−1
4
Dj+1,l +

1

4
Dj−1,l +Dj,l)hj−1,l

+ (1− 2R(1− θ)Dj,l)hj,l

+R(1− θ)(1
4
Dj+1,l − 1

4
Dj−1,l +Dj,l)hj+1,l

or b0hj,l+1 = b1hj−1,l+1+b2hj+1,l+1+b3hj−1,l+b4hj,l+b5hj+1,l if written more compactly.
Here b0 > 0 and b4 ≥ 0 under the same condition as before, namely (B7). The

coefficients b1, b2, b3, b5 are only nonnegative under a new condition on the variability
of D, however. In particular,

(B8) (b3 ≥ 0 and b5 ≥ 0) if and only if |Dj+1,l −Dj−1,l| ≤ 4|Dj,l|
and with a similar condition for the nonnegativity of b1, b2.
Such a condition will not hold true at locations where D is small and varies rapidly.

But such a situation definitely applies to the ice equation (B1) even in the steady
state, as can be seen in appendix A. It can happen either when h → 0 at the edges
of the icesheet or at ridges where hx → 0. Thus this discretization of (B2), and also
several other choices, is inappropriate for the ice equation.
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Appendix C. Finite differences on not–equally–spaced grids

See [2] section 3.1 for the basics of polynomial interpolation.
Suppose {zk} are grid points with a ≤ z1 < z2 < · · · < zN+1 ≤ b. Suppose

approximate derivatives of the function T : [a, b] → R are sought at the points zk
using only the values Tk = T (zk).
Now, the unique mth degree polynomial P (z) which goes through the points

(ζ1, T (ζ1)), (ζ2, T (ζ2)), . . . , (ζm+1, T (ζm+1)), where a ≤ ζ1 < ζ2 < · · · < ζm+1 ≤ b,
is

P (z) =
m+1∑
i=1

T (ζi)Li(z).

The special polynomials Li(z) associated to the {ζj} were first written down by
Lagrange:

Li(z) =
m+1∏
j=1
j �=i

z − ζj
ζi − ζj .

A little thought about the functions Li(z) is worthwhile because the idea that they
are “delta–functions” will come through. That is, Li(zj) = δij.

9 If T has m + 1
derivatives then the error made in using P as an approximation to T is exactly

(C1) T (z)− P (z) = T
(m+1)(ζ̃)

(m+ 1)!

m+1∏
i=1

(z − ζi),

where ζ̃ is between z and the most distant ζi. Since ζ̃ depends on z in an uncontrolled
manner, this formula is only useful in the context of a bound on T (m+1). Furthermore,
this error formula can not be usefully differentiated.
The total number of grid point is N + 1. Second order finite difference approx-

imations to first derivatives require m = 2, as one is interested in differentiating
quadratic interpolating polynomials at a grid point zk. In fact, let

PC(z) = Tk−1
(z − zk)(z − zk+1)

(zk−1 − zk)(zk−1 − zk+1)
+ Tk

(z − zk−1)(z − zk+1)

(zk − zk−1)(zk − zk+1)
+ Tk+1

(z − zk−1)(z − zk)

(zk+1 − zk−1)(zk+1 − zk)

PL(z) = Tk−2
(z − zk−1)(z − zk)

(zk−2 − zk−1)(zk−2 − zk)
+ Tk−1

(z − zk−2)(z − zk)

(zk−1 − zk−2)(zk−1 − zk)
+ Tk

(z − zk−2)(z − zk−1)

(zk − zk−2)(zk − zk−1)

PR(z) = Tk
(z − zk+1)(z − zk+2)

(zk − zk+1)(zk − zk+2)
+ Tk+1

(z − zk)(z − zk+2)

(zk+1 − zk)(zk+1 − zk+2)
+ Tk+2

(z − zk)(z − zk+1)

(zk+2 − zk)(zk+2 − zk+1)
.

These three quadratic polynomials are centered, left, and right approximations to T
around zk, respectively. See figure 15.

9Thus “delta–functions” were discovered by Lagrange and not Kronecker or Dirac!
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Figure 15. Three neighboring quadratic interpolants around zk.

These polynomials generate approximations of derivatives of T (z) at z = zk. In
particular, PC generates the centered approximation:

T ′(zk) ≈ P ′
C(zk)(C2)

=Tk−1
zk − zk+1

(zk−1 − zk)(zk−1 − zk+1)
+ Tk

2zk − zk−1 − zk+1

(zk − zk−1)(zk − zk+1)
+ Tk+1

zk − zk−1

(zk+1 − zk−1)(zk+1 − zk)
.

There is also a “centered” second derivative approximation

T ′′(zk) ≈ P ′′
C(zk)(C3)

=Tk−1
2

(zk−1 − zk)(zk−1 − zk+1)
+ Tk

2

(zk − zk−1)(zk − zk+1)
+ Tk+1

2

(zk+1 − zk−1)(zk+1 − zk)
.

Note that if the {zk} are equally–spaced with spacing ∆z, the above two formulae
really are centered, and they reduce to the familiar approximations:

T ′(zk) ≈ Tk+1 − Tk−1

2∆z

T ′′(zk) ≈ Tk+1 − 2Tk + Tk−1

∆z2
.

The polynomials PL, PR generate one–sided approximations of T ′(zk) which are
useful in upwinding:

T ′(zk) ≈ P ′
L(zk)(C4)

=Tk−2
zk − zk−1

(zk−2 − zk−1)(zk−2 − zk)
+ Tk−1

zk − zk−2

(zk−1 − zk−2)(zk−1 − zk)
+ Tk

2zk − zk−2 − zk−1

(zk − zk−2)(zk − zk−1)

T ′(zk) ≈ P ′
R(zk)(C5)

=Tk
2zk − zk+1 − zk+2

(zk − zk+1)(zk − zk+2)
+ Tk+1

zk − zk+2

(zk+1 − zk)(zk+1 − zk+2)
+ Tk+2

zk − zk+1

(zk+2 − zk)(zk+2 − zk+1)
.

Compare to [22] equation (A2). In the equally–spaced case, the formulas reduce to:

T ′(zk) ≈ 1

∆z

(
1

2
Tk−2 − 2Tk−1 +

3

2
Tk

)

T ′(zk) ≈ 1

∆z

(
−3
2
Tk + 2Tk+1 − 1

2
Tk+2

)
,
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which may–or–may–not be familiar but appear in tables [4].
If T has a bounded third derivative then the first derivative approximations above

based on PC , PL, PR are second order (O(∆z
2) as ∆z → 0) in the equally–spaced case.

This follows because the error formula has a degree three polynomial, in essence, but
requires a Taylor series argument because (C1) can not be differentiated. Further-
more, in the equally–spaced case the approximation T ′′(zk) ≈ P ′′

C(zk) is also O(∆x
2) if

T has a bounded fourth derivative—this follows from another Taylor series argument
[2].
If the {zk} are not equally–spaced, let ∆ be a bound for the differences {zk+1−zk}

in the sense that there is 0 < λ < 1 such that λ∆ < zk+1 − zk < ∆. If T has a
bounded third derivative then the first derivative approximations (C2), (C4), (C5)
are O(∆2) as ∆ → 0. However, approximation (C3) of the second derivative T ′′(zk)
is only O(∆) and does not benefit from symmetry as in the equally spaced case.
Therefore consider the cubic polynomial through the points (zk−2, Tk−2), (zk−1, Tk−1),

(zk, Tk), (zk+1, Tk+1):

P̃ (z) =
Tk−2(z − zk−1)(z − zk)(z − zk+1)

(zk−2 − zk−1)(zk−2 − zk)(zk−2 − zk+1)
+

Tk−1(z − zk−2)(z − zk)(z − zk+1)

(zk−1 − zk−2)(zk−1 − zk)(zk−1 − zk+1)

+
Tk(z − zk−2)(z − zk−1)(z − zk+1)

(zk − zk−2)(zk − zk−1)(zk − zk+1)
+

Tk+1(z − zk−2)(z − zk−1)(z − zk)

(zk+1 − zk−2)(zk+1 − zk−1)(zk+1 − zk)
.

It generates an O(∆2) estimate of the second derivative:

T ′′(zk) ≈ P̃ ′′(zk) =
Tk−2(4zk − 2zk−1 − 2zk+1)

(zk−2 − zk−1)(zk−2 − zk)(zk−2 − zk+1)
+

Tk−1(4zk − 2zk−2 − 2zk+1)

(zk−1 − zk−2)(zk−1 − zk)(zk−1 − zk+1)

(C6)

+
Tk(6zk − 2zk−2 − 2zk−1 − 2zk+1)

(zk − zk−2)(zk − zk−1)(zk − zk+1)
+

Tk+1(4zk − 2zk−2 − 2zk−1)

(zk+1 − zk−2)(zk+1 − zk−1)(zk+1 − zk)
.

This approximation is “lop–sided”, of course, but it has the accuracy as claimed.
It takes advantage of the fact that ∆zk = zk+1 − zk increases as k increases in the
situation of interest. For the k = 2 case it is useful to have the form where the
lop–sided–ness is on the right:

T ′′(zk) ≈ Tk−1(4zk − 2zk+1 − 2zk+2)

(zk−1 − zk)(zk−1 − zk+1)(zk−1 − zk+2)
+

Tk(6zk − 2zk−1 − 2zk+1 − 2zk+2)

(zk − zk−1)(zk − zk+1)(zk − zk+2)
(C7)

+
Tk+1(4zk − 2zk−1 − 2zk+2)

(zk+1 − zk−1)(zk+1 − zk)(zk+1 − zk+2)
+

Tk+2(4zk − 2zk−1 − 2zk+1)

(zk+2 − zk−1)(zk+2 − zk)(zk+2 − zk+1)
.

Formulae (C4), (C5), (C6), (C7) are used in section 4.

Appendix D. Computations involving the “local diffusivity rate” δ

Let δ = 2(ρg)nA(T )αn−1(h− z)n as in section 4 (take f = 1 here). Let I = ∫ z

0
δ dζ

for convenience. Formula (36) for u follows immediately from (2).
Since D is defined (see (1)) by the relation

Q =

∫ h

0

u dz = −D∂h
∂x
+ ubh
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it follows from (36) that

D(x, t) =

∫ h(x,t)

0

∫ z

0

δ(x, ζ, t) dζdz =

∫ h(x,t)

0

δ(x, z, t)(h(x, t)− z) dz.

(Change variables using a picture of {0 ≤ z ≤ h, 0 ≤ ζ ≤ z}, for instance.) Letting
J =

∫ z

0
δ(z − ζ) dζ, we have equation (39).

The heat source Σ involves ∂u
∂z
= −δ ∂h

∂x
. The fundamental theorem of calculus

shows Σ = g(h−z)
Cp

∣∣∂h
∂x

∂u
∂z

∣∣ = g(
Cp
(h− z) ∣∣∂h

∂x

∣∣2 δ, which is (38).
Finally, w needs to be computed from incompressibility (4) and the boundary

condition wb = 0 (7). Note this represents a choice. It is also possible to use the
“surface kinematical condition”

(D1)
∂h

∂t
+
∂h

∂x
· u

∣∣∣
z=h

− w
∣∣∣
z=h

= B

(see [12]) to provide an upper boundary condition for w. On the other hand, it is
natural to check (D1) as a diagnostic if wb = 0 is used as a boundary condition. In
any case,

w(x, z, t)− 0 =
∫ z

0

∂w

∂z
dζ =

∫ z

0

−∂u
∂x
dζ

from (4). Now, −∂u
∂x
= ∂

∂x

(
I ∂h

∂x

)
if ub = 0 so

w =

∫ z

0

∂

∂x

(
I
∂h

∂x

)
dζ =

∂

∂x

([∫ z

0

I dζ

]
∂h

∂x

)
and J =

∫ z

0
I dζ, thus (37).

Appendix M. Matlab codes and outputs

iceconstants.m code.
% ICECONSTANTS Values for global constants for iceA.m, iceC.m, etc.

% Also computes analytical solution for steady state.

% Note n, L, x, xplot must be defined to run this script.

% copy these global declarations into client function

global SperA A B rho g kk Cp G Gam C gCp KT

global L x xplot hexact hexactplot Dexactplot

global A0 Q Rgas cc kappa Tr

global a1 a2 Q1 Q2 RgasPB

SperA=31556926; % year is this many seconds (i.e. 365.2422 days)

% adjustable parameters

A=1e-16/SperA; %=3.17e-24 1/(Pa^3 s); (EISMINT value) flow law parameter

B=0.3/SperA; %=9.51e-9 m/s; ice accumulation rate

% fixed physical constants
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rho=910; % kg/m^3; density of ice

g=9.81; % m/s^2; accel of gravity

kk=2.10; % J/m K s; thermal conductivity of ice

Cp=2009; % J/kg K; specific heat capacity of ice

G=.042; % J/m^2 s; geothermal heat flux

betaCC=8.7e-4; % K/m; change of melting point with depth (Clausius-Clap.)

% for Hooke81 rule

A0=2.948e-9; % Pa^-3 s^-1;

Q=7.88e4; % J/mol; activation energy for creep

Rgas=8.321; % J/(mol K); gas constant

kappa=1.17;

cc=0.16612; % K^kappa

Tr=273.39; % K; triple point of water

% for Paterson&Budd82 rule

a1=3.615e-13; % Pa^-3 s^-1; T<263

a2=1.733e3; % Pa^-3 s^-1; T>=263

Q1=6.0e4; % J/mol; T<263

Q2=13.9e4; % J/mol; T>=263

RgasPB=8.314; % J/(mol K);

% derived constants

Gam=2*(rho*g)^n*A; % overall constant in continuity eqn

C=B*(n+2)/Gam;

gCp=g/Cp;

KT=kk/(rho*Cp); % temperature eqn diffusion constant

% compute analytical steady state h and D

pow1=1+1/n; pow2=2+2/n; twoCpow=2*C^(1/n);

Lxpow=L^pow1-abs(x).^pow1;

hexact=(twoCpow*Lxpow).^(1/pow2);

Lxpowplot=L^pow1-abs(xplot).^pow1;

hexactplot=(twoCpow*Lxpowplot).^(1/pow2);

C1=2^(n/(2*n+2))*C^(1/(2*n+2));

C2=Gam*C1^(2*n+1)/((n+2)*2^(n-1));

pow3=(n+2)/(2*n+2);

Dexactplot=C2*abs(xplot).^(1-1/n).*Lxpowplot.^pow3;

%for n=3 only: c1=2^(3/8)*(5*B/Gam)^(1/8);

%Dexactplot=(Gam*c1^7/20)*abs(xplot).^(2/3).*(Lxpowplot).^(5/8);

iceA.m code.
function [H0, DD, Rh]=iceA(dtyear, Nx, Mt, type);

% ICEA [H0, DD, Rh]=iceA(dtyear, Nx, Mt, type)

% Solves continuity equation decoupled from heat model:

% h_t = B + (D h_x)_x, D = Gam |h_x|^(n-1) h^(n+2)

% Computes five O(dx^2,dt) finite difference methods:
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% type == 1: explicit with type I diffusion

% type == 2: explicit with type II diffusion

% type == 3: semi-implicit with type I diffusion

% type == 4: semi-implicit with type II diffusion

% type == 5: s.-impl. with type (.2 II + .8 I)

% type == 6: s.-impl. with II at interior pts; smear to I at bdry

% PARAMETERS:

% dtyear = time step in years

% Nx = number of horizontal steps (dividing [-L,L])

% Mt = number of time steps

% (so dtyear*Mt = T_end; must be multiple of 100)

% H0 = computed center height at final time

% DD = computed x=L/2 "diffusion" at final time

% Rh = coefficient of flow equation difference scheme

%

% Try "dty=10; [H0 DD Rh]=iceA(dty,30,ceil(25000/dty),type)"

% for comparison to Eismint.

% (ELB 6/27/02)

global SperA A B rho g kk Cp G Gam C gCp KT

global L x xplot hexact hexactplot

n=3;

L=750000; % meters

dx=(2*L)/Nx; x=-L:dx:L; % x grid

xmid=-L+dx/2:dx:L-dx/2; % midpt grid

xplot=linspace(-L,L,400); % for plotting analytical soln

iceconstants;

% constants related to grid

dt=dtyear*SperA;

R0=dt/(dx*dx); % presumed related to stability for continuity eqn

Tend=dt*Mt; % final time

t=0:dt:Tend;

% use either steady state analytical soln or zero as initial condition

ic=hexact;

%ic=zeros(1,Nx+1);

% allocate space for solutions

hh=zeros(Nx+1,Mt+1); % hh(j,l) with j for x and l for t

D=zeros(Nx+1,1); %column vector

hh(:,1)=ic’; %insert initial condition

%enforce boundary conditions at start

hh(1,:)=0; hh(Nx+1,:)=0;

D(1)=0; D(Nx+1)=0; % see steady bdry

% time-stepping loop

tic

switch type

case 1

for l=1:Mt

delh=(hh(2:Nx+1,l)-hh(1:Nx,l))/dx; % Nx by 1 column vector

hav=(hh(2:Nx+1,l)+hh(1:Nx,l))/2; % Nx by 1 col vect
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Dmid=(Gam/(n+2))*hav.^(n+2).*abs(delh).^(n-1); % Nx by 1 col vect

F=Dmid.*(hh(2:Nx+1,l)-hh(1:Nx,l));

hh(2:Nx,l+1)=hh(2:Nx,l)+B*dt+R0*(F(2:Nx)-F(1:Nx-1));

end;

case 2

for l=1:Mt

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 col vect

D(2:Nx)=(Gam/(n+2))*hh(2:Nx,l).^(n+2).*abs(delh).^(n-1);

Dmid=.5*(D(2:Nx+1)+D(1:Nx)); % D is Nx+1 by 1; Dmid is Nx by 1

F=Dmid.*(hh(2:Nx+1,l)-hh(1:Nx,l));

hh(2:Nx,l+1)=hh(2:Nx,l)+B*dt+R0*(F(2:Nx)-F(1:Nx-1));

end;

case 3

for l=1:Mt

delh=(hh(2:Nx+1,l)-hh(1:Nx,l))/dx; % Nx by 1 column vector

hav=(hh(2:Nx+1,l)+hh(1:Nx,l))/2; % Nx by 1 col vect

Dmid=(Gam/(n+2))*hav.^(n+2).*abs(delh).^(n-1); % Nx by 1 col vect

MM=spdiags([-R0*Dmid(2:Nx) (ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+hh(2:Nx,l);

hh(2:Nx,l+1)=MM bb; % note backslash: tridiagonal solve

end;

case 4

for l=1:Mt

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 col vect

D(2:Nx)=(Gam/(n+2))*hh(2:Nx,l).^(n+2).*abs(delh).^(n-1);

Dmid=.5*(D(2:Nx+1)+D(1:Nx)); % D is Nx+1 by 1; Dmid is Nx by 1

MM=spdiags([-R0*Dmid(2:Nx) (ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+hh(2:Nx,l);

hh(2:Nx,l+1)=MM bb; % note backslash: tridiagonal solve

end;

case 5

mu=.8;

for l=1:Mt

% average: mu * type I + (1-mu) * type II

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 col vect

D(2:Nx)=(Gam/(n+2))*hh(2:Nx,l).^(n+2).*abs(delh).^(n-1);

DmidII=.5*(D(2:Nx+1)+D(1:Nx)); % D is Nx+1 by 1; Dmid is Nx by 1

delh=(hh(2:Nx+1,l)-hh(1:Nx,l))/dx; % Nx by 1 column vector

hav=(hh(2:Nx+1,l)+hh(1:Nx,l))/2; % Nx by 1 col vect

DmidI=(Gam/(n+2))*hav.^(n+2).*abs(delh).^(n-1);

Dmid=mu*DmidI+(1-mu)*DmidII; % Nx by 1 col vect

MM=spdiags([-R0*Dmid(2:Nx) (ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+hh(2:Nx,l);

hh(2:Nx,l+1)=MM bb; % note backslash: tridiagonal solve

end;

case 6

for l=1:Mt

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 col vect

D(2:Nx)=(Gam/(n+2))*hh(2:Nx,l).^(n+2).*abs(delh).^(n-1);

Dmid=.5*(D(2:Nx+1)+D(1:Nx)); % D is Nx+1 by 1; Dmid is Nx by 1
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% redo Dmid at ends by type I; never actually uses D(-L)=0 or D(L)=0

DmidIleft=(Gam/(n+2))*(hh(1:3,l)/2+hh(2:4,l)/2).^(n+2).*...

abs(hh(2:4,l)/dx-hh(1:3,l)/dx).^(n-1);

DmidIright=(Gam/(n+2))*(hh(Nx-2:Nx,l)/2+hh(Nx-1:Nx+1,l)/2).^(n+2).*...

abs(hh(Nx-1:Nx+1,l)/dx-hh(Nx-2:Nx,l)/dx).^(n-1);

Dmid(1:3)=[1 2/3 1/3]’.*DmidIleft+[0 Dmid(2)/3 2*Dmid(3)/3]’;

Dmid(Nx-2:Nx)=[1/3 2/3 1]’.*DmidIright+[2*Dmid(Nx-2)/3 Dmid(Nx-1)/3 0]’;

MM=spdiags([-R0*Dmid(2:Nx) (ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+hh(2:Nx,l);

hh(2:Nx,l+1)=MM bb; % note backslash: tridiagonal solve

end;

case 7

for l=1:Mt

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 col vect

D(2:Nx)=(Gam/(n+2))*hh(2:Nx,l).^(n+2).*abs(delh).^(n-1);

Dmid=.5*(D(2:Nx+1)+D(1:Nx)); % D is Nx+1 by 1; Dmid is Nx by 1

% redo Dmid at ends by type I; never actually uses D(-L)=0 or D(L)=0

DmidIleft=(Gam/(n+2))*(hh(1:5,l)/2+hh(2:6,l)/2).^(n+2).*...

abs(hh(2:6,l)/dx-hh(1:5,l)/dx).^(n-1);

DmidIright=(Gam/(n+2))*(hh(Nx-4:Nx,l)/2+hh(Nx-3:Nx+1,l)/2).^(n+2).*...

abs(hh(Nx-3:Nx+1,l)/dx-hh(Nx-4:Nx,l)/dx).^(n-1);

Dmid(1:5)=[1 4/5 3/5 2/5 1/5]’.*DmidIleft+...

[0 Dmid(2)/5 2*Dmid(3)/5 3*Dmid(4)/5 4*Dmid(5)/5]’;

Dmid(Nx-4:Nx)=[1/5 2/5 3/5 4/5 1]’.*DmidIright+...

[4*Dmid(Nx-4)/5 3*Dmid(Nx-3)/5 2*Dmid(Nx-2)/5 Dmid(Nx-1)/5 0]’;

MM=spdiags([-R0*Dmid(2:Nx) (ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+hh(2:Nx,l);

hh(2:Nx,l+1)=MM bb; % note backslash: tridiagonal solve

end;

otherwise

error(’Unknown type (must be in 1,2,3,4,5,6).’);

end;

toc

H0=hh(floor(Nx/2)+1,Mt+1); % center height

DD=Dmid(floor(Nx*.75)+1); % compare to D(L/2)

Rh=max(abs(Dmid))*R0;

if Mt<100, hplot=hh; tplot=t;

else, tt=1:100:Mt+1; tplot=t(tt); hplot=hh(:,tt); end;

% plot of thickness

pos=get(gcf,’Position’); set(gcf,’Position’,[pos(1) 100 600 600]);

subplot(3,1,1), plot(x/1000,hh(:,Mt+1),’.’,xplot/1000,hexactplot,’r’);

ylabel(’meters’);

typename=strvcat(’explicit type I’, ’explicit type II’,...

’semi--implicit type I’, ’semi--implicit type II’,...

’mu*I+(1-mu)*II’,’mostly II; smear to I bdry’,’type 7’);

title(strvcat([’ICEA Solid: Analytical steady solution. Delta t = ’...

num2str(dtyear) ’.’],[’Dotted: Thickness h at t=’ num2str(Tend/SperA) ...

’ years computed by ’ typename(type,:) ’ method.’]));

subplot(3,1,2), plot(xplot/1000,Dexactplot,’r’); hold on
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plot(xmid/1000,Dmid,’.’);

hold off

ylabel(’diffusion D in m^2/s’); xlabel(’x in km’);

% 3D plot

subplot(3,1,3), mesh(tplot/SperA,x/1000,hplot), view(37.5,30);

ylabel(’x in km’); xlabel(’t in years’); zlabel(’h in meters’);

iceB.m code.
function [H0, DD, Rh]=iceB(dtyear, Nx, Mt)

% ICEB [H0, DD, Rh]=iceB(dtyear, Nx, Mt)

%

% Solves flow equation with a semi-implicit

% finite differences method of order ?.

% In particular,

% h_t = (D(t) h_x)_x

% is approximated by Crank-Nicolson type method

% but D(t*) is approximated by

% 3/2 D(t_l) - 1/2 D(t_l-1).

% Try " dty=25; [H0 DD Rh]=iceB(dty,30,ceil(25000/dty)) ".

% (Stability limit around dty=37 for this Nx=30.)

% (ELB 7/1/02)

global SperA A B rho g kk Cp G Gam C gCp KT

global L x xplot hexact hexactplot

n=3;

L=750000; % meters

dx=(2*L)/Nx; x=-L:dx:L; % x grid

xmid=-L+dx/2:dx:L-dx/2; % midpt grid

xplot=linspace(-L,L,400); % for plotting analytical soln

iceconstants;

% constants related to grid

dt=dtyear*SperA;

R0=dt/(dx*dx); % presumed related to stability for continuity eqn

Tend=dt*Mt; % final time

t=0:dt:Tend;

% use either analytical steady state or zero as initial condition

ic=hexact;

%ic=zeros(1,Nx+1);

% allocate space for solutions

hh=zeros(Nx+1,Mt+1); % hh(j,l) with j for x and l for t

D=zeros(Nx+1,1); %column vector

hh(:,1)=ic’; %insert initial condition

%enforce boundary conditions at start

hh(1,:)=0; hh(Nx+1,:)=0;

D(1)=0; D(Nx+1)=0; % see steady bdry

% first step of lower order

hh(1,2)=0; hh(Nx+1,2)=0;
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delh=(ic(3:Nx+1)-ic(1:Nx-1))’/(2*dx);

Dold(2:Nx,1)=(Gam/(n+2))*hh(2:Nx,1).^(n+2).*abs(delh).^(n-1);

Dold(1)=0; Dold(Nx+1)=0;

Dmid=.5*(Dold(2:Nx+1)+Dold(1:Nx));

MM=spdiags([-R0*Dmid(2:Nx) ...

(ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+ic(2:Nx)’;

hh(2:Nx,2)=MM bb; %note backslash: tridiagonal solve

% time-stepping loop

R=.5*R0;

tic

for l=2:Mt

hh(1,l+1)=0; hh(Nx+1,l+1)=0; % boundary conditions

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 column vector

% D is Nx+1 by 1;

D(2:Nx,1)=(Gam/(n+2))*hh(2:Nx,l).^(n+2).*abs(delh).^(n-1);

D(1)=0; D(Nx+1)=0; % see steady bdry

% Dmid is Nx by 1; extrapolate to t*

Dmid=.75*(D(2:Nx+1)+D(1:Nx))-.25*(Dold(2:Nx+1)+Dold(1:Nx));

Dm2=Dmid(1:Nx-1)+Dmid(2:Nx);

MM=spdiags([-R*Dmid(2:Nx) ...

(ones(Nx-1,1)+R*Dm2) ...

-R*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+(ones(Nx-1,1)-R*Dm2).*hh(2:Nx,l) + ...

R*Dmid(2:Nx).*hh(3:Nx+1,l)+R*Dmid(1:Nx-1).*hh(1:Nx-1,l);

hh(2:Nx,l+1)=MM bb; %note backslash: tridiagonal solve

Dold=D;

end;

toc

H0=hh(floor(Nx/2)+1,Mt+1); % center height

Rh=max(abs(D))*R0;

DD=D(floor(Nx*.75)+2);

if Mt<100, hplot=hh; tplot=t;

else, tt=1:100:Mt+1; tplot=t(tt); hplot=hh(:,tt); end;

% plot of thickness

pos=get(gcf,’Position’); set(gcf,’Position’,[pos(1) 100 600 600]);

subplot(3,1,1), plot(x/1000,hh(:,Mt+1),’.’,xplot/1000,hexactplot,’r’); % profile plot

ylabel(’h in meters’);

title(strvcat([’ICEB Solid: Analytical steady solution. Delta t = ’...

num2str(dtyear) ’.’],[’Dotted: Thickness h at t=’ num2str(Tend/SperA) ...

’ years by semi-implicit type II extrapolated diffusion.’]));

subplot(3,1,2), plot(xplot/1000,Dexactplot,’r’); hold on

plot(x/1000,D,’.’); hold off % diffusion plot

ylabel(’D in m^2/s’); xlabel(’x in km’);

title([’Diffusion at t=’ num2str(Tend/SperA) ’ years.’]);

% 3D plot

subplot(3,1,3), mesh(tplot/SperA,x/1000,hplot), view(37.5,30);

ylabel(’x in km’); xlabel(’t in years’); zlabel(’h in meters’);
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iceC.m code (and some outputs).

function [H0, Rh, RT]=iceC(dtyear, Nx, Mt, Nz, hmax, plugpos);

% ICEC: [H0, Rh, RT]=iceC(dtyear, Nx, Mt, Nz, hmax, plugpos)

%

% Solves continuity equation

% h_t = B + (D h_x)_x, D = Gam |h_x|^(n-1) h^(n+2)

% with a semi-implicit, first order finite differences method.

% Solves simultaneously for the depth-dependent velocities

% and temperature in a column at fixed x. That is, solves

% T_t + w(z) T_z = KT T_zz + S(z)

% where w is the vertical velocity *calculated based on

% a constant value of A*, KT is a diffusion coefficient, and

% S(z) = (g/Cp) (h-z) |dh/dx du/dz|

% is a dissipation heat source.

% PARAMETERS:

% dtyear = time step in years

% Nx = number of horizontal steps (dividing [-L,L])

% Mt = number of time steps

% (so dtyear*Mt = T_end; must be multiple of 100)

% Nz = number of vertical steps (in the column)

% hmax = maximum expected thickness

% plugpos = position of column as fraction of width

% H0 = computed center height at final time

% Rh = coefficient of flow equation difference scheme

% RT = coefficient of temperature eqn difference scheme

%

% Try "[H0 Rh RT]=iceC(25,30,1000,36,3600,.65)".

% (ELB 7/8/02)

global SperA A B rho g kk Cp G Gam C gCp KT

global L x xplot hexact hexactplot Dexactplot

n=3;

L=750000; dx=(2*L)/Nx; x=-L:dx:L; %x grid based on Nx

xplot=linspace(-L,L,400);

iceconstants;

% constants related to grid

dt=dtyear*SperA;

dz=hmax/Nz;

R0=dt/(dx*dx); % presumed related to stability for continuity eqn

Tend=dt*Mt; % final time

RT=KT*dt/(dz*dz); % presumed related to stability for temperature eqn

geoheat=-G*dz/kk; % bdry conds: T_z(0) = -G/k when cold

z=0:dz:hmax;

t=0:dt:Tend;

dtomega=log(2);

% use either steady state analytical soln or zero as initial condition

ic=hexact;

%ic=zeros(1,Nx+1);

% mostly build matrix for temperature--in--column model
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J=floor(plugpos*Nx)+1; % index of column

xJ=-L+(J-1)*dx; % = bar x in notes

Ts=239+(8e-8)*abs(xJ);

MT=sparse(Nz,Nz);

MT(2,1)=-RT;

MT(2:Nz,2:Nz)=spdiags([-RT*ones(Nz-1,1) (1+2*RT)*ones(Nz-1,1) -RT*ones(Nz-1,1)],...

-1:1,Nz-1,Nz-1);

% allocate space for solutions

hh=zeros(Nx+1,Mt+1); % hh(j,l) with j for x and l for t

hh(:,1)=ic’; %insert initial condition

hh(1,1)=0; hh(Nx+1,1)=0; %enforce boundary conditions at start

T=zeros(Nz+1,Mt+1); % space for temperatures

T(:,1)=Ts*ones(Nz+1,1); %initial condition for temperature

% time-stepping loop

tic, for l=1:Mt

% continuity eqn: semi--implicit type II step

hh(1,l+1)=0; hh(Nx+1,l+1)=0; % boundary conditions

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 column vector

D(2:Nx,1)=(Gam/(n+2))*hh(2:Nx,l).^(n+2).*abs(delh).^(n-1);

D(1)=0; D(Nx+1)=0; % see steady bdry

Dmid=.5*(D(2:Nx+1)+D(1:Nx)); % D is Nx+1 by 1; Dmid is Nx by 1

MM=spdiags([-R0*Dmid(2:Nx) (ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bb=B*dt+hh(2:Nx,l);

hh(2:Nx,l+1)=MM bb; %note backslash: tridiagonal solve

% build velocities u (hor) and w (vert) in column; also u_z and Sigma

h=hh(J,l); alf=delh(J-1); hxx=(1/(dx*dx))*(hh(J-1,l)-2*h+hh(J+1,l));

h2=h*h; h3=h2*h; h4=h3*h; h5=h4*h; alf2=alf*alf;

w=-Gam*alf2*(.75*hxx*(h5/5-(h-z).^5/5-h4*z)+alf2*(h4/4-(h-z).^4/4-h3*z));

dudz=-Gam*alf2*alf*(h-z).^3; source=gCp*(h-z).*abs(alf*dudz);

% temperature: semi--implicit step

hoT=Tr-betaCC*h; % homologous temp at base

if (T(1,l) < hoT) | (T(2,l)-T(1,l) < geoheat)

MT(1,1:2)=[-1 1]; bT(1,1)=geoheat; % cold case: Neumann cond

else, MT(1,1:2)=[1 0]; bT(1,1)=hoT; end % hot case: Dirichlet cond

bT(2:Nz,1)=T(2:Nz,l)+( -(dt/(2*dz))*w(2:Nz)’.*(T(3:Nz+1,l)-T(1:Nz-1,l))+...

dt*source(2:Nz)’ ).*(z(2:Nz)<h)’+dtomega*Ts*(z(2:Nz)>=h)’;

bT(Nz,1)=bT(Nz,1)+RT*Ts;

T(1:Nz,l+1)=(MT+spdiags(dtomega*(z(1:Nz)>=h)’,0,Nz,Nz)) bT;

%note backslash: tridiagonal solve

T(Nz+1,l+1)=Ts;

for k=1:Nz+1

hoT=Tr-betaCC*(h-z(k)); % homologous temp at depth z

if T(k,l+1)>hoT, T(k,l+1)=hoT; end % if too hot, set to hoT

end;

end, toc

H0=hh(floor(Nx/2)+1,Mt+1); % center height
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Rh=max(abs(D))*R0;

if Mt<100, hplot=hh; tplot=t; Tplot=T;

else, tt=1:100:Mt+1; tplot=t(tt); hplot=hh(:,tt); Tplot=T(:,tt); end;

% plot of thickness

figure(1);

pos=get(gcf,’Position’); set(gcf,’Position’,[pos(1) 100 600 600]);

subplot(3,1,1), plot(x/1000,hh(:,Mt+1),’.’,xplot/1000,hexactplot,’r’);

hold on; plot([xJ/1000 xJ/1000],[0 hh(J,Mt+1)]); hold off;

ylabel(’meters’);

title([’ICEC Dotted: computed thickness h at t=’ num2str(Tend/SperA) ...

’ years. Solid: analytical steady solution.’]);

subplot(3,1,2), xmid=-L+.5*dx:dx:L-.5*dx;

plot(xmid/1000,Dmid,’.’,xplot/1000,Dexactplot,’r’); % diffusion plot

ylabel(’m^2/s’); xlabel(’x in km’);

title([’Diffusion D at t=’ num2str(Tend/SperA) ’ years.’]);

% 3D plot

subplot(3,1,3), mesh(tplot/SperA,x/1000,hplot), view(37.5,30);

ylabel(’x in km’); xlabel(’t in years’); zlabel(’h in meters’);

% plot velocities at last time

figure(2);

hindex=ceil(h/dz); zh=0:dz:hindex*dz;

uh=(1/4)*Gam*alf2*alf*((h-zh).^4-h4);

pos=get(gcf,’Position’); set(gcf,’Position’,[pos(1) 100 600 600]);

subplot(2,1,1), plot(uh,zh,’r.’);

xlabel(’m/s’); ylabel(’z in meters’);

title([’ICEC Profile of horizontal velocity u at x=’ num2str(xJ/1000)...

’ km and at t=’ num2str(Tend/SperA) ’ years.’]);

subplot(2,1,2), plot(w(1:hindex+1)*100,zh,’b.’);

xlabel(’m/s’); ylabel(’z in meters’);

title([’Vertical velocity w at x=’ num2str(xJ/1000)...

’ km and at t=’ num2str(Tend/SperA) ’ years.’]);

% plot heat source and temp at last time

figure(3);

Th=T(1:hindex+1,Mt+1);

pos=get(gcf,’Position’); set(gcf,’Position’,[pos(1) 100 600 600]);

subplot(2,1,1), plot(source(1:hindex+1),zh,’.’);

xlabel(’(deg K)/s’); ylabel(’z in meters’);

title([’ICEC Heat source from dissipation Sigma at x=’ num2str(xJ/1000)...

’ km and t=’ num2str(Tend/SperA) ’ years.’]);

subplot(2,1,2), plot(Th’-(Tr-betaCC*(h-zh)),zh,’r.’);

xlabel(’deg K below melting-point-at-depth’); ylabel(’z in meters’);

title([’Temperature T at x=’ num2str(xJ/1000)...

’ km and t=’ num2str(Tend/SperA) ’ years.’]);

% 3D plot of T versus t and z

figure(4);

mesh(tplot/SperA,zh,Tplot(1:hindex+1,:)); view(37.5,30);

ylabel(’z in m’); xlabel(’t in years’); zlabel(’deg K’);

title([’ICEC Temperature T at x=’ num2str(xJ/1000)...

’ km.’]);
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The following are output figures of “iceC(25,30,1000,36,3600,.65)”:
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Figure 16. figure(1) of iceC.m
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Figure 17. figure(2) of iceC.m
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Figure 18. figure(3) of iceC.m



44 ED BUELER

iceD.m code.

function iceD(dtyear, myNx, Mt, myzk, coupled, flow, n, arrtype)

% ICED iceD(dtyear, myNx, Mt, myzk, coupled, flow, n, arrtype)

%

% Solves coupled thermomechanical problem in 2D.

% Solves continuity equation

% with a semi-implicit type II method (method 4).

% Solves simultaneously for the depth-dependent velocities.

% Solves simultaneously for the depth-dependent temperature,

% using a ‘‘free-boundary’’ model.

% INPUTS:

% dtyear = time step in years

% myNx = number of horizontal steps (dividing [-L,L])

% Mt = number of time steps

% (so dtyear*Mt = T_end; must be multiple of 100)

% myzk = row vector of vertical positions

% (zk(1)=0; zk(last)=h_max; zk increasing)

% coupled = 1 or 0

% flow = flow enhancement factor

% n = power in Glen flow law (typically 3 or 1.8)

% arrtype = ’Hooke’ or ’PatBud’ (see arr.m)

%

% Try "iceD(25,30,10,100*[0 4 8 12 16 20 24 28 32 36 40],0,1,3,’Hooke’)"

% equal spaced;

% Try "zk=4000*[0 .02 .05 .1 .17 .25 .4 .55 .7 .85 1]

% iceD(25,30,1000,zk,0,1,3,’Hooke’)"

% for Payne & Dongelmans spacing DECOUPLED. [123 sec]

% Try "zk=5000*[0 .02 .05 .1 .17 .25 .4 .55 .7 .85 1]

% iceD(25,30,1000,zk,1,5,3,’Hooke’)"

% for Payne & Dongelmans spacing COUPLED. [122 sec]

% Try "zk(1:12)=5000*[0 .01 .02 .03 .05 .08 .11 .14 .17 .21 .25 .30];

% zk(13:23)=5000*[.35 .40 .45 .51 .58 .65 .72 .79 .86 .93 1]

% iceD(10,60,2500,zk,1,5,3,’Hooke’)"

% for more accuracy. [19 min]

% (ELB 7/29/02)

global SperA A B rho g kk Cp G C gCp KT

global L dx Nx x xplot hexact hexactplot

global zk Nz dzk hdzk d2zk d3zk dtKT dtomega

% x and t grid info

L=750000; % meters

Nx=myNx; dx=(2*L)/Nx; x=-L:dx:L; % x grid

xmid=-L+dx/2:dx:L-dx/2; % midpt grid

xplot=linspace(-L,L,400); % for plotting analytical soln

iceconstants; % get values of constants

dt=dtyear*SperA;

R0=dt/(dx*dx); % presumed related to stability for continuity eqn

Tend=dt*Mt; % final time

t=0:dt:Tend;

Gam0=2*(rho*g)^n;

dtomega=log(2);
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dtKT=dt*KT;

geoheat=-G/kk;

% extract z grid info from zk input

zk=myzk; Nz=size(zk,2)-1; hmax=zk(Nz+1);

dzk=zk(2:Nz+1)-zk(1:Nz); hdzk=.5*dzk;

d2zk=zk(3:Nz+1)-zk(1:Nz-1); d3zk=zk(4:Nz+1)-zk(1:Nz-2);

dzkmax=max(dzk); dzkmin=min(dzk);

[zzk xx]=meshgrid(zk,x);

dTdzvect=[(2*zk(1)-zk(2)-zk(3))/(dzk(1)*d2zk(1)), ...

d2zk(1)/(dzk(1)*dzk(2)), ...

-dzk(1)/(d2zk(1)*dzk(2))]; % from (C5); at k=1

% initial conditions for h and T

hh=zeros(Nx+1,Mt+1); % hh(j,l) with j for x and l for t

% use either analytical steady state or zero as initial condition

%hh(:,1)=hexact’;

hh(:,1)=repmat(0,Nx+1,1);

hh(1,:)=0; hh(Nx+1,:)=0; %enforce boundary conditions at start

T=zeros(Nx+1,Nz+1,Mt+1); % T(j,k,l)

% initial condition for temperature

Ts=239+(8e-8)*(abs(x)/1000).^3; % Eismint version

T(:,:,1)=repmat(Ts’,1,Nz+1);

% allocate for other quantities

ddf=zeros(Nx+1,Nz+1); % local diffusivity delta

II=zeros(Nx+1,Nz+1); % integral of ddf

JJ=zeros(Nx+1,Nz+1); % other integral of ddf

u=zeros(Nx+1,Nz+1); % hor vel

w=zeros(Nx+1,Nz+1); % vert vel

Sig=zeros(Nx+1,Nz+1); % dissipation source

alfhnm1=zeros(Nx-1,Nz+1);

hmz=zeros(Nx-1,Nz+1);

JJavdh=zeros(Nx,Nz+1);

Dstar=zeros(Nx+1,1);

Dmid=zeros(Nx,1);

% create temperature matrices [sparse, pentadiagonal, Nz by Nz]

MTN=pentaT; % Neumann case

MTD=MTN; MTD(1,1:3)=[1 0 0]; % in Dirichlet case, T(j,1,l) is known

% time loop

tic

for l=1:Mt

% h, T given; compute ddf

delh=(hh(3:Nx+1,l)-hh(1:Nx-1,l))/(2*dx); % Nx-1 by 1 col vect

alfnm1=repmat(abs(delh).^(n-1),1,Nz+1);

hmz=repmat(hh(2:Nx,l),1,Nz+1)-zzk(2:Nx,:);

hmz=hmz.*(hmz>0);

if coupled, AR=arr(T(2:Nx,:,l),arrtype);

else, AR=repmat(A,Nx-1,Nz+1); flow=1; end

ddf(2:Nx,:)=flow*Gam0*AR.*alfnm1.*abs(hmz).^n;
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% compute I, J, D using vintlist

for j=2:Nx

II(j,:)=vintlist(ddf(j,:));

JJ(j,:)=zk.*II(j,:)-vintlist(ddf(j,:).*zk);

Dstar(j)=interp1(zk,JJ(j,:),hh(j,l)); % linearly interpolate

end

Dmid=.5*(Dstar(1:Nx)+Dstar(2:Nx+1)); % 1 by Nx (row) vector

% solve continuity equation for hh(:,l+1)

Mh=spdiags([-R0*Dmid(2:Nx) (ones(Nx-1,1)+R0*(Dmid(1:Nx-1)+Dmid(2:Nx))) ...

-R0*Dmid(1:Nx-1)], -1:1, Nx-1, Nx-1);

bh=B*dt+hh(2:Nx,l);

hh(2:Nx,l+1)=Mh bh; % note backslash: tridiagonal solve

% stop if heights exceed hmax

if max(hh(:,l+1))>hmax,

error([’ICED: max height for given zk grid exceeded at l = ’ ...

num2str(l)]), end

% compute u, w, Sig for temperature equation

u(2:Nx,:)=-repmat(delh,1,Nz+1).*II(2:Nx,:);

dh=hh(2:Nx+1,l)-hh(1:Nx,l);

JJavdh=.5*(JJ(1:Nx,:)+JJ(2:Nx+1,:)).*repmat(dh,1,Nz+1);

w(2:Nx,:)=(1/(dx*dx))*(JJavdh(2:Nx,:) - JJavdh(1:Nx-1,:));

Sig(2:Nx,:)=(g/Cp)*repmat(delh.*delh,1,Nz+1).*hmz.*ddf(2:Nx,:);

% solve temp eqn by semi-implicit in each vertical column

for j=2:Nx

% Build right sides. Note: T(:,k,l) is an Nx+1 by 1 column vector;

% T(j,:,l) is a 1 by Nz+1 row vector.

h=hh(j,l); ins = (zk<h); outs = 1-ins; % ins=1 if inside ice

switch j % decide on whether to actually upwind horizontally

case 2, uhd=’R’; case Nx, uhd=’L’; otherwise, uhd=’u’; end

% use right side first deriv at k=2 (not upwind)

bT(2,1)=-dt*ins(2)*(upwindhor(T(:,2,l)’,j,u(j,2),uhd)...

+ upwindvert(T(j,:,l),2,w(j,2),’R’));

for k=3:Nz-1

bT(k,1)=-dt*ins(k)*(upwindhor(T(:,k,l)’,j,u(j,k),uhd)...

+ upwindvert(T(j,:,l),k,w(j,k),’u’)); end

% use left side first deriv at k=Nz (not upwind)

bT(Nz,1)=-dt*ins(Nz)*(upwindhor(T(:,Nz,l)’,j,u(j,Nz),uhd)...

+ upwindvert(T(j,:,l),Nz,w(j,Nz),’L’));

% add other terms to right side

bT(2:Nz,1)=bT(2:Nz,1) + T(j,2:Nz,l)’ + dt*Sig(j,2:Nz)’.*ins(2:Nz)’+...

dtomega*Ts(j)*outs(2:Nz)’;

% to REMOVE ADVECTION: bT(2:Nz,1)=T(j,2:Nz,l)’+dtomega*Ts(j)*outs(2:Nz)’;

bT(Nz,1)=bT(Nz,1) ... % add bdry term

+dtKT*2*(2*zk(Nz)-zk(Nz-2)-zk(Nz-1))/(d3zk(Nz-2)*d2zk(Nz-1)*dzk(Nz))*T(j,Nz+1,l);

% solve pentadiagonal system for temperatures in column

dTdz=dTdzvect’*T(j,1:3,l); % vertical derivative of T at base

hoT=Tr-betaCC*(h-zk); % homologous temp at depth

if (T(j,1,l) < hoT(1)) | (dTdz < geoheat)
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bT(1,1)=geoheat; % cold case: Neumann cond

T(j,1:Nz,l+1)=(MTN + spdiags([0; dtomega*outs(2:Nz)’],0,Nz,Nz)) bT;

%full(MTN + spdiags([0; dtomega*outs(2:Nz)’],0,Nz,Nz))

else

bT(1,1)=hoT(1); % warm case: Dirichlet cond

T(j,1:Nz,l+1)=(MTD + spdiags([0; dtomega*outs(2:Nz)’],0,Nz,Nz)) bT;

end

T(j,:,l+1)=min([hoT; T(j,:,l+1)]); % if too hot, set to hoT

T(j,Nz+1,l+1)=Ts(j);

T(1,:,l+1)=repmat(Ts(j),Nz+1,1); T(Nx+1,:,l+1)=T(1,:,l+1);

end;

end;

toc

hoT=T(:,:,Mt+1)-Tr+betaCC*(repmat(hh(:,Mt+1),1,Nz+1)-zzk); % final homo. temp.

disp([’Central thickness h(x=0) = ’ num2str(hh(floor(Nx/2)+1,Mt+1))]);

disp([’Diffusivity D(x=L/2) = ’ num2str(Dmid(floor(Nx*.75)+1))]);

disp([’Homo. basal temp. T(x=0,z=0) = ’ num2str(hoT(floor(Nx*.5)+1,1))]);

disp([’Stability ratio for continuity eqn Rh = ’ num2str(max(abs(Dmid))*R0)]);

disp([’Stability ratio for temperature eqn RT = ’ num2str(dtKT/(dzkmin*dzkmin))]);

if Mt<100, hplot=hh; tplot=t;

else, tt=1:100:Mt+1; tplot=t(tt); hplot=hh(:,tt); end;

% plot of thickness

figure(1), clf, pos=get(gcf,’Position’); set(gcf,’Position’,[pos(1) 100 600 600]);

subplot(3,1,1), plot(x/1000,hh(:,Mt+1),’.’,xplot/1000,hexactplot,’r’); % profile plot

ylabel(’z in m’);

title(strvcat([’ICED Solid: Analytical steady solution. Delta t = ’ ...

num2str(dtyear) ’. n = ’ num2str(n) ’.’],...

[’Dotted: Thickness h at t=’ num2str(Tend/SperA)...

’ years by semi-implicit type II.’]));

subplot(3,1,2), plot(xplot/1000,Dexactplot,’r’); hold on

plot(xmid/1000,Dmid,’.’); hold off % diffusion plot

ylabel(’D in m^2/s’); xlabel(’x in km’);

title([’Diffusion at t=’ num2str(Tend/SperA) ’ years.’]);

% 3D plot

subplot(3,1,3), mesh(tplot/SperA,x/1000,hplot), view(37.5,30);

ylabel(’x in km’); xlabel(’t in years’); zlabel(’h in meters’);

% contour plot of temperature at last time

figure(2), clf, pos=get(gcf,’Position’); set(gcf,’Position’,[pos(1) pos(2) 800 400]);

% interpolate T onto regular grid; display

[zi xi]=meshgrid(0:hmax/(3*Nz):hmax,x);

hoTi = interp2(zzk,xx,hoT,zi,xi,’cubic’);

contourf(xi/1000,zi,hoTi), shading flat, hold on

[c hT]=contour(xi/1000,zi,hoTi,’k-’); clabel(c,hT), colorbar

plot(x/1000,hh(:,Mt+1)), plot(xx/1000,zzk,’g.’)

jA=ceil(Nx/2); jB=ceil((3/4)*Nx); jC=ceil((19/20)*Nx);

text(x(jA)/1000,zk(1)-200,’A’);

text(x(jB)/1000,zk(1)-200,’B’);

text(x(jC)/1000,zk(1)-200,’C’);

title([’Computed homologous temperature at t=’ num2str(Tend/SperA) ’ years.’]);

xlabel(’x in km’); ylabel(’z in m’);hold off
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% profile plots of temp. at chosen positions

figure(3), clf

plot(hoT(jA,:),zk,hoT(jB,:),zk,hoT(jC,:),zk)

legend(’A: x = 0’,’B: x = L/2’,’C: x = .9L’)

title([’Computed homo. temp. at positions A,B,C shown in figure 2.’]);

zA=max(find(zk<hh(jA,Mt+1))); text(hoT(jA,zA),hh(jA,Mt+1),’- h’)

zB=max(find(zk<hh(jB,Mt+1))); text(hoT(jB,zB),hh(jB,Mt+1),’- h’)

zC=max(find(zk<hh(jC,Mt+1))); text(hoT(jC,zC),hh(jC,Mt+1),’- h’)

arr.m code.
function A=arr(T,type);

% ARR A=arr(T,type)

% Arrhenius relation.

% type=’Hooke’: Hooke81

% type=’PatBud’: Paterson&Budd82

% test graph (compare to Payne&Baldwin2000 figure 5):

% n=3; L=7.5e5; % for iceconstants

% x=linspace(-L,L,21); xplot=x; iceconstants;

% T=223:273;

% AH=SperA*arr(T,’Hooke’);

% APB=SperA*arr(T,’PatBud’);

% semilogy(T,AH,’-+’,T,APB,’-o’)

% ylabel(’A (Pa^-3 a^-1)’)

% xlabel(’Temperature (K)’)

% legend(’Hooke’,’Paterson&Budd’,2)

global A0 Q Rgas cc kappa Tr

global a1 a2 Q1 Q2 RgasPB

switch type

case ’Hooke’

A = A0*exp(-Q./(Rgas*T)+ (3*cc)./(Tr-T).^kappa);

case ’PatBud’

A = a1*exp(-Q1./(RgasPB*T)).*(T<263) ...

+ a2*exp(-Q2./(RgasPB*T)).*(T>=263);

end %switch

pentaT.m code.
function A=pentaT;

% PENTAT A=pentaT

% Builds Nz by Nz pentadiagonal temp eqn matrix

% based on second deriv formulas from cubic approx.

% Incorporates Neumann cond at k=1. See appendix C.

% OUTPUT:

% A = sparse Nz by Nz matrix

% To test:

% global zk Nz dzk d2zk d3zk dtKT



2D THERMOMECHANICAL MODEL FOR ICE FLOW 49

% zk=4000*[0 .02 .05 .1 .17 .25 .4 .55 .7 .85 1];

% Nz=size(zk,2)-1; dzk=zk(2:Nz+1)-zk(1:Nz); d2zk=zk(3:Nz+1)-zk(1:Nz-1);

% d3zk=zk(4:Nz+1)-zk(1:Nz-2); dt=10; dtKT=dt*31556926*2.10/(910*2009);

% P=pentaT; spy(P), full(P)

global zk Nz dzk d2zk d3zk dtKT

A=sparse(Nz,Nz);

% use (C5) for k=1

A(1,1:3)=[(2*zk(1)-zk(2)-zk(3))/(dzk(1)*d2zk(1)), ...

d2zk(1)/(dzk(1)*dzk(2)), ...

-dzk(1)/(d2zk(1)*dzk(2))];

k=2; % use (C7)

A(2,1:4)=[0 1 0 0] ...

- dtKT*[-2*(2*zk(k)-zk(k+1)-zk(k+2))/(dzk(k-1)*d2zk(k-1)*d3zk(k-1)), ...

2*(3*zk(k)-zk(k-1)-zk(k+1)-zk(k+2))/(dzk(k-1)*dzk(k)*d2zk(k)), ...

-2*(2*zk(k)-zk(k-1)-zk(k+2))/(d2zk(k-1)*dzk(k)*dzk(k+1)), ...

2*(2*zk(k)-zk(k-1)-zk(k+1))/(d3zk(k-1)*d2zk(k)*dzk(k+1))];

% use (C6)

for k=3:Nz-1

A(k,k-2:k+1)= [0 0 1 0] ...

- dtKT*[-2*(2*zk(k)-zk(k-1)-zk(k+1))/(dzk(k-2)*d2zk(k-2)*d3zk(k-2)), ...

2*(2*zk(k)-zk(k-2)-zk(k+1))/(dzk(k-2)*dzk(k-1)*d2zk(k-1)), ...

-2*(3*zk(k)-zk(k-2)-zk(k-1)-zk(k+1))/(d2zk(k-2)*dzk(k-1)*dzk(k)), ...

2*(2*zk(k)-zk(k-2)-zk(k-1))/(d3zk(k-2)*d2zk(k-1)*dzk(k))];

end

k=Nz; % use (C6)

A(Nz,Nz-2:Nz)= [0 0 1] ...

- dtKT*[-2*(2*zk(k)-zk(k-1)-zk(k+1))/(dzk(k-2)*d2zk(k-2)*d3zk(k-2)), ...

2*(2*zk(k)-zk(k-2)-zk(k+1))/(dzk(k-2)*dzk(k-1)*d2zk(k-1)), ...

-2*(3*zk(k)-zk(k-2)-zk(k-1)-zk(k+1))/(d2zk(k-2)*dzk(k-1)*dzk(k))];

upwindhor.m code.
function y = upwindhor(ff,j,lam,forceLR)

% UPWINDHOR y = upwindhor(ff,j,lam,forceLR)

% Finds first derivative of ff according to upwinding on the value lam:

% / (left-side equal-spaced 3 pt formula) if lam >= 0

% y = lam * |

% (right-side equal-spaced 3 pt formula) if lam < 0

% See appendix C.

% to test:

% global Nx dx

% Nx=10; dx=.3; xj=0:dx:3;

% f=.5*xj.^2 % note (.5 x^2)’ = x

% upwindhor(f,4,1,’u’) % = xj(4) = .9

% upwindhor(f,1,1,’R’) % = xj(1) = 0

global Nx dx
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switch forceLR

case ’u’ % actually upwind

if lam>=0

if j>=3

y=.5*ff(j-2)-2*ff(j-1)+1.5*ff(j);

else, error(’UPWINDHOR: index out of range for lambda nonnegative’)

end;

else

if j<=Nx-1

y=-1.5*ff(j)+2*ff(j+1)-.5*ff(j+2);

else, error(’UPWINDHOR: index out of range for lambda negative’)

end;

end

case ’L’ % forced use of left-side approx

y=.5*ff(j-2)-2*ff(j-1)+1.5*ff(j);

case ’R’ % forced use of right-side approx

y=-1.5*ff(j)+2*ff(j+1)-.5*ff(j+2);

otherwise

error(’UPWINDHOR: forcing option not allowed’)

end

y=(lam/dx)*y;

upwindvert.m code.
function y = upwindvert(ff,k,lam,forceLR)

% UPWINDVERT y = upwindvert(ff,k,lam,forceLR)

% Finds first derivative of ff according to upwinding on the value lam:

% / (left-side 3 pt formula) if lam >= 0

% y = lam * |

% (right-side 3 pt formula) if lam < 0

% See appendix C.

% to test:

% global Nz zk dzk d2zk, Nz=15,

% zk=[0:.05:.5 .6:.1:1]

% dzk=zk(2:Nz+1)-zk(1:Nz), d2zk=zk(3:Nz+1)-zk(1:Nz-1)

% f=.5*zk.^2 % note (.5 z^2)’ = z

% upwindvert(f,4,1,’u’) % = zk(4) = .15

global Nz zk dzk d2zk

switch forceLR

case ’u’

if lam>=0

if k>=3 % use left-sided approx (C4)

y=ff(k-2)*dzk(k-1)/(dzk(k-2)*d2zk(k-2)) - ...

ff(k-1)*d2zk(k-2)/(dzk(k-2)*dzk(k-1)) + ...

ff(k)*(2*zk(k)-zk(k-2)-zk(k-1))/(d2zk(k-2)*dzk(k-1));

else, error(’UPWINDVERT: index out of range for lambda nonnegative’)

end;

else

if k<=Nz-1 % use right-sided approx (C5)
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y=ff(k)*(2*zk(k)-zk(k+1)-zk(k+2))/(dzk(k)*d2zk(k)) + ...

ff(k+1)*d2zk(k)/(dzk(k)*dzk(k+1)) - ...

ff(k+2)*dzk(k)/(d2zk(k)*dzk(k+1));

else, error(’UPWINDVERT: index out of range for lambda negative’)

end

end

case ’L’ % forced use of left-side approx

y=ff(k-2)*dzk(k-1)/(dzk(k-2)*d2zk(k-2)) - ...

ff(k-1)*d2zk(k-2)/(dzk(k-2)*dzk(k-1)) + ...

ff(k)*(2*zk(k)-zk(k-2)-zk(k-1))/(d2zk(k-2)*dzk(k-1));

case ’R’ % forced use of right-side approx

y=ff(k)*(2*zk(k)-zk(k+1)-zk(k+2))/(dzk(k)*d2zk(k)) + ...

ff(k+1)*d2zk(k)/(dzk(k)*dzk(k+1)) - ...

ff(k+2)*dzk(k)/(d2zk(k)*dzk(k+1));

otherwise

error(’UPWINDVERT: forcing option not allowed’)

end

y=lam*y;

vintlist.m code.
function Jlist = vintlist(ff)

% VINTLIST Jlist = vintlist(ff)

% Computes integral of ff at points zk by trapezoid rule:

% Jlist(k) = int_0^zk(k) ff(zeta) d zeta; k = 1,...,Nz+1

% to test:

% global Nz zk hdzk, Nz=10,

% zk=[0 .02 .05 .10 .17 .25 .40 .55 .7 .85 1]

% % compare: zk=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]

% hdzk=.5*(zk(2:Nz+1)-zk(1:Nz))

% f=(3/2)*zk.^(1/2) % integral is zk.^(3/2)

% plot(zk,f,’.’,zk,vintlist(f),’o’,zk,zk.^(3/2))

% legend(’f’,’vintlist(f)’,’exact integral of f’), grid on

% title([’max. error ’ num2str(max(abs(vintlist(f)-zk.^(3/2))))])

global Nz hdzk

% hdzk(k) = .5 (zk(k+1)-zk(k)); k = 1,...,Nz

Jlist = cumsum([0 hdzk.*(ff(1:Nz)+ff(2:Nz+1))]);


