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Abstract. The following two situations are shown to be equivalent.
I. The commutation relation [A,A∗] = α holds on the span of excited states of

the form (A∗)kζ. Here A is a Dirac operator acting in a weighted Hilbert space
of sections of a Dirac bundle S over a Riemannian manifold M , ζ is a vacuum
state, and α > 0 is a constant.

II. There exists a scalar solution h on all of M to the simultaneous equations
4h = α and αh + 1

2 |∇h|2 = 0.
The two situations are connected by writing e2h dx for the weight (measure)

for the Hilbert space of sections of S.

1. Introduction

The quantum harmonic oscillator Hamiltonian is equal, up to an additive con-
stant, to a number operator N = a∗i ai for annihilation operators ai and creation
operators a∗i which satisfy the commutation relations [ai, a

∗
j ] = δij~. It follows that

N has, up to a multiplicative constant, spectrum equal to the nonnegative inte-
gers. The theory of these operators has a famous representation in which the ai

are the basic first–order derivatives ∂
∂xi on the Euclidean space Rn. One constructs

this representation from the position representation via the natural unitary map
between L2(Rn,Lebesgue measure) to L2(Rn,Gauss measure).

Recent discoveries in the harmonic analysis of a compact Lie groupG, originating
with [Gro93], suggest that on G the obvious first–order operators on functions
can be regarded as annihilation operators in some sense. They act in a Hilbert
space where heat kernel measure plays the same role as Gauss measure does on
Rn. Specifically, let aX = X for X in the Lie algebra of G. Suppose aX acts in
L2(G, ρt dx) where ρt is the heat kernel at the identity of G and t > 0 is fixed. Then
a∗X = −X −X(log ρt) from which [aX , a

∗
Y ] = −[X, Y ] −XY (log ρt) follows. Thus

the annihilation and creation operators do not satisfy the original commutation
relations, except in the G = Rn case. Nevertheless these operators are one aspect
of a fruitful analysis on Lie groups. See [Hal01] and the references therein.
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In the above context, annihilation operators arise as the natural first derivative
operators. A general (connected and complete) Riemannian manifoldMn obviously
possesses no preferred finite–dimensional space of first–order operators acting on
functions which might serve as annihilation operators. There exist, however, glob-
ally defined and natural first–order operators on vector bundles over M . In fact,
we will see that we can answer the question:

For a Dirac operator D acting on sections of a Dirac bundle S, what
conditions on M , S, and a measure ν dx characterize the situation
[D,D∗] = (positive constant) on excited states generated from a
vacuum state by applying powers of D∗?

The question assumes D acts in the Hilbert space L2(S, ν dx) of sections of S,
where ν is some smooth positive function, and that the adjoint D∗ is calculated in
that space. Also, dx is the Riemann–Lebesgue measure.

As an example of a Dirac bundle and operator, consider the bundle of differential
forms with D = d+δ. The spin bundles ([LM89]) are also Dirac bundles, of course.

The answer to the question is that if h = 1
2
log ν satisfies equations (1) and

(2) below then [D,D∗] = (constant) on the span of excited states, defined below.
Conversely, these conditions on h are necessary. These results (see theorems 6 and
7) are the main ones of the paper.

Assume h solves (1) and (2). We construct, from N = 1
2
D∗D by the natural uni-

tary transform, the Schrödinger operator 1
2
D2−αh− α

2
+γ acting on the unweighted

L2 sections of S. This operator is self–adjoint (see theorem 10). A spectral result,
showing that it is a “partial” number operator under some geometrical conditions,
appears in corollary 12.

The author’s original motivation was not from the Lie groups context cited
above, but rather from a desire to understand the spectral properties of a Hodge
operator weighted by heat kernel measure ([Bue99],[GW00]). Note that the small–
time limit of the heat kernel solves equation (2) in the following sense: Let h(x) =
1
2
limt→0+ t log ρt(x0, x) where ρ is the heat kernel on M and x0 ∈ M . By a result

of Varadhan [Var67], h solves (2) with α = 1
2

since in fact h(x) = −1
4
d(x0, x)

2

where d is the Riemannian distance. Note h solves equation (1) with α replaced by
nα on flat spaces, but not generally. On the other hand, the heat kernel is always
defined (on completeM), whereas (1) and (2) may have no (simultaneous) solution.
These facts may relate the above–mentioned Hodge operator to the Dirac/number
operator studied here.

2. Definitions and results

Let S be a Dirac bundle over M with Dirac operator D—refer to [LM89] def-
inition II.5.2. In particular S is a real or complex vector bundle with a positive
definite symmetric (hermitian) metric 〈·, ·〉 on fibers and a connection ∇. Let Γ(S)
be the smooth sections of S.
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Let h ∈ C∞(M) be a real function and consider the measure e2h dx. Let (φ, ψ)h =∫
M
〈φ, ψ〉 e2h dx. Let L2

hS be the Hilbert space of measurable sections φ of S such
that (φ, φ)h <∞.

Definition. Let A = 1√
2
D and A∗ = 1√

2
D∗, where D∗ is the formal adjoint com-

puted with respect to (·, ·)h. Note D is not symmetric (formally self–adjoint) for
general h.

Definition. We say that a nonzero ζ ∈ Γ(S) is a vacuum state if Dζ = 0 and
∇∇hζ = 0.

The first condition on the vacuum is automatic if the label “annihilation opera-
tor” is to apply to D. The second condition appeared to the author as a technical
condition, but may be a “polarization” in the language of geometric quantization.
Clearly if f ∈ Γ(S) is a constant function then f is a vacuum.

There is no uniqueness of the vacuum—for instance, all bounded harmonic dif-
ferential forms on a flat (Riemannian) cylinder are vacuum states for D = d + δ
by this definition, assuming h is a function of the unbounded coordinate.

Fixing a vacuum ζ, we denote the excited states ϕk = (A∗)kζ for k ≥ 0. That
is, they are built be applying the creation operator A∗ in the usual manner.

Our precise statement of the question is then: Under what conditions on the
data (M, g, h, S,D) is the commutator [A,A∗] a positive constant on the linear
span of the excited states {ϕk}∞k=0 where ζ is a vacuum state?

Our answer is that M must be noncompact, in which case there are necessary
and sufficient conditions in the form of partial differential equations on h, that is,
on the measure density. Specifically, let α be a positive constant. Then [A,A∗] = α
on the span of {ϕk} if and only if there exists γ ∈ R such that

(1) 4h = α and

(2) αh+
1

2
|∇h|2 = γ.

Here 4 = −div ◦ ∇ is the nonnegative Laplace–Beltrami operator. Theorem 6
shows that these equations are necessary and theorem 8 that they are sufficient.

Note that these conditions are completely independent of the nature of the par-
ticular Dirac bundle S. However, general properties of Dirac operators as a differ-
ential operators are essential. (See the calculations in the next section.)

Equations (1) and (2) evidently “overdetermine” h. That is, existence of a
solution constrains the Riemannian manifold M . We can give these constraints

in more a geometrical form as follows. Let r =
√

2
α

(
γ
α
− h

)
. (Note (2) implies

h ≤ γ
α
.) Then equations (1) and (2) are equivalent to

(3) 4r = 0 and

(4) |∇r| = 1
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respectively, at every point x ∈ M such that r(x) > 0. That is, (1) and (2) are
nearly (except where r has value zero and is not differentiable) equivalent to the
existence of a nonnegative harmonic distance function.

If r is harmonic then flow along ∇r is volume–preserving.
The substitution h = h′ + γ

α
shows equation (2) has a solution if and only if

αh′+ 1
2
|∇h′|2 = 0. That is, we can choose γ = 0 by a normalization of the measure

e2h dx.
Note that equation (1) does not have a solution for α > 0 if M is compact

(without boundary). For M compact–with–boundary, α volM =
∫

M
4h dx is the

integral of an (n − 1)–form on ∂M by the divergence theorem. Specifically, if M
is complete (as a manifold–without–boundary) and the hypotheses of theorem 6
apply then M is not compact.

3. Necessity of equations (1) and (2)

If {ej} is a local orthonormal basis of Γ(TM) then the Dirac operator for S is
D = ej ·∇ej

where “·” is Clifford multiplication Γ(TM⊗S) → Γ(S). (The Einstein
convention is used throughout.) Since (M, g) is Riemannian, Clifford multiplication
is nondegenerate: 〈X · φ,X · φ〉 = −g(X,X) 〈φ, φ〉 for (real) X ∈ Γ(TM) and
φ ∈ Γ(S). If f is a function and if φ is a section of S then D(fφ) = ∇f · φ+ fDφ.

Recall that we have both the Levi–Civita connection ∇ on TM and a connection
(again ∇) on S. Their relation is ∇X(Y · φ) = (∇XY ) · φ + Y · ∇Xφ, where
X, Y ∈ Γ(TM), φ ∈ Γ(S).

Recall 4 = δd = − div∇ = −tr Hess .
The following second order product rules undoubtedly appear somewhere in the

literature of Dirac operators. They have elementary proofs.

Lemma 1. For any smooth function f on M , D(∇f) = 4f .
Lemma 2. For f ∈ C∞(M) and φ ∈ Γ(S),

(5) D (∇f · φ) +∇f ·Dφ = (4f)φ− 2∇∇fφ.

Corollary 3. D2(fφ) = (4f)φ− 2∇∇fφ+ fD2φ.

We can now express A∗ and [A,A∗] as differential operators, using the usual
integration by parts.

Corollary 4. On φ ∈ Γ(S),

A∗φ =
1√
2

(Dφ+ 2∇h · φ) ,

[A,A∗]φ = −2 (∇h ·Dφ+∇∇hφ) + (4h)φ.
We now show the necessity of equations (1) and (2). Regarding vacuum states,

note that the usual elliptic theory implies that ζ is smooth if Dζ = 0. Also, if
ζ 6= 0 and Dζ = 0 then {x ∈M : ζ(x) = 0} has empty interior and measure zero.
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Given a vacuum state ζ, recall ϕk = (A∗)kζ for k = 0, 1, 2, . . . . Let Dζ =
span{ϕk} be the vector space of finite linear combinations.

It is useful to expose the space Ph on which the commutator [A,A∗] acts in a
simple manner. (We will see that if (1) and (2) then the excited states ϕk are in
Ph and indeed the commutator acts as a constant on these states.)

Definition. Let Πh = ∇h ·D +∇∇h. Let Ph = ker Πh ⊂ Γ(S).

By corollary 4, the commutator [A,A∗] acting on Ph is multiplication by the
scalar 4h.
Lemma 5.

Πh(hφ) = hΠhφ

Πh(∇h · φ) = |∇h|2Dφ−∇h · ∇∇hφ+ (4h)∇h · φ+∇
(1

2
|∇h|2

)
· φ.

Proof. The first formula corresponds to a straightforward calculation.
From lemma 2 and corollary 3, Πh(∇h·φ) = |∇h|2Dφ+(4h)∇h·φ−∇h·(∇∇hφ)+

1
2
((4h)∇h−D2(h∇h) + hD2(∇h)) · φ = |∇h|2Dφ−∇h · ∇∇hφ+ 3

2
(4h)∇h · φ−

1
2
D (∇h · ∇h+ hD(∇h)) ·φ+ 1

2
hD(4h) ·φ which gives the second result by lemma

1. �

Theorem 6. Suppose ζ ∈ Γ(S) is a vacuum state. If [A,A∗] = α (a positive
constant) on Dζ then A and N = A∗A leave Dζ invariant and there exists a γ ∈ R
so that equations (1) and (2) hold for h.

Proof. It is clearly the case that A, N leave Dζ invariant, by construction and the
assumed commutation relation.

To show equation (1), note that αζ = [A,A∗] ζ = −2 (∇h ·D +∇∇h) ζ +
(4h)ζ = (4h)ζ, and thus 4h = α where ζ 6= 0, and thus on all of M .

To show equation (2) first compute that A∗ζ =
√

2∇h · ζ. By equation (5),
corollary 4, and the hypotheses, α∇h · ζ = −2 (∇h ·D +∇∇h) (∇h · ζ) + α∇h · ζ,
so Πh(∇h · ζ) = 0. On the other hand, by lemma 5, the definition of a vacuum,
and equation (1), Πh(∇h · ζ) = αh · ζ +

(
1
2
|∇h|2

)
· ζ = ∇

(
1
2
|∇h|2 + αh

)
· ζ.

Thus∇
(

1
2
|∇h|2 + αh

)
·ζ = 0. If x ∈M then either ζ(x) = 0 or∇(αh+1

2
|∇h|2) =

0 by the nondegeneracy of Clifford multiplication. From preceding remarks on
vacuums, equation (2) holds everywhere. �

4. Sufficiency of equations (1) and (2)

Lemma 7. Suppose h ∈ C∞(M) satisfies equations (1) and (2) for some α > 0
and suppose ζ is a vacuum. Then ϕk ∈ Ph for all k and

(6) ϕk =

{ ∑j
i=0 akih

iζ, k = 2j is even,∑j
i=0 bkih

i∇h · ζ, k = 2j + 1 is odd,

where aki, bki are real constants depending only on α and γ.
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Proof. Note that since ζ is a vacuum, for all j = 0, 1, 2, . . . we have

A∗(hjζ) =
1√
2
(jhj−1 + 2hj)∇h · ζ

A∗(hj∇h · ζ) = − 1√
2
(jhj−1 + 2hj)|∇h|2ζ +

1√
2
hj(4h)ζ.

Thus equations (1) and (2) imply equation (6) by induction. Then lemma 5 implies
ϕk ∈ Ph. �

Theorem 8. Suppose h ∈ C∞(M) satisfies equations (1) and (2) for some α > 0
and suppose ζ is a vacuum. Then [A,A∗] = α on Dζ and Nϕk = kαϕk.

Proof. Use the above lemma and the usual induction. �

It is time to admit that everything so far has been “formal” in the sense that A,
A∗, etc. act in the space of smooth sections of S, and that the Hilbert space L2

hS
has played no role beyond integration–by–parts.

Let us show the existence of a Hamiltonian (Schrödinger) operator corresponding
to N . In fact, if equations (1) and (2) hold then we find (as follows) an essentially
self–adjoint “extension” Ñ of N . This Ñ has core Γc(S) and is unitarily–equivalent
to an operator of the form D2 + V , for scalar V , under the transform to the
unweighted L2 space of sections of S. It is an extension in the sense that if φ ∈ Ph

then Nφ = Ñφ.

Definition. Let D̃ = D +∇h·, let 4̃ = D̃2, let Vh = −αh− α
2

+ γ, and let

Ñ =
1

2
4̃+ Vh.

These operators are symmetric in L2
hS with dense domain Γc(S).

Lemma 9. If (M, g) is complete then D̃ and 4̃ are essentially self–adjoint in L2
hS.

Proof. Let L2S be the space of measurable sections of S which are square–integrable
with respect to dx. Let U : L2

hS → L2S be the unitary map (“ground state trans-

form”) φ 7→ ehφ. Then D̃, 4̃ are unitarily equivalent to D, D2 in L2S (with dense
domains Γc(S)), respectively. Clearly Γc(S) is preserved by U . It is well–known
that D, D2 are self–adjoint if M is complete. �

Theorem 10. Suppose (M, g) is complete. If h solves equation (2) for α > 0 and
γ ∈ R, then Vh is bounded below and thus Ñ is essentially self–adjoint in L2

hS. If

in addition h solves equation (1) then φ ∈ Ph implies Nφ = Ñφ.

Proof. Note UÑU−1 = 1
2
D2 + Vh is a self–adjoint operator plus a bounded–below

scalar potential, which acts in unweighted L2S. Theorem 2.3 of [Les00] shows
1
2
D2 + Vh is self–adjoint.
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For φ ∈ Ph it follows that ∇h ·Dφ = −∇∇hφ. Thus from lemma 2

Nφ =
1

2
D2φ+∇h ·Dφ =

1

2
D2φ−∇∇hφ

=
1

2

(
D2φ+D(∇h · φ) +∇h ·Dφ− (4h)φ

)
=

1

2

(
D̃2φ−∇h · ∇h · φ− (4h)φ

)
=

1

2
4̃+

1

2
|∇h|2φ− 1

2
(4h)φ.

Thus Nφ = Ñφ if equations (1) and (2) hold for h and if φ ∈ Ph. �

In particular we conclude that under (1) and (2), Ñϕk = kαϕk. Of course this
does not yet imply that {kα}∞k=0 lies in the spectrum of Ñ . But we can show that
the excited states ϕk are integrable under a geometric condition. We then get the
spectral conclusion by an easy argument.

The example where S is the bundle of forms on R2, D = d+ δ, and h = −(x1)
2

shows that some further condition is necessary for integrability of the excited states.

Assume (2) holds for h ∈ C∞(M) and that γ = 0. Let r =
√
− 2

α
h and note

|∇r| = 1. Suppose (without loss of generality) that r(x0) = 0 and fix x0 ∈ M .
Let Ms = r−1(s) for s > 0. By (2) and the implicit function theorem, Ms is an
(n− 1)–dimensional submanifold of M .

Lemma 11. Assume M is complete and that h ∈ C∞(M) satisfies (1) and (2) for
some α > 0. Suppose that for the vacuum ζ there exists 0 ≤ c < α

2
and C0 > 0

such that |ζ(x)| ≤ C0e
cs2

for x ∈ Ms. Furthermore, suppose voln−1Ms < ∞ for
some s > 0. Then ϕk ∈ L2

hS for any k ≥ 0.

Proof. By (1), voln−1Ms is constant independent of s and also r−1(0) is a set of
measure zero. Thus∫

|h|k|ζ|2e2h dx = (voln−1Ms)
(α

2

)k
∫

s>0

s2kecs2

e−αs2

ds <∞.

By lemma 7, ϕk ∈ L2
hS for k even. And then equation (2) gives the result for k

odd. �

Corollary 12. Under the hypotheses of lemma 11 above, ϕk is in the domain of
Ñ (as a self–adjoint operator) and kα is in the spectrum of Ñ for all k ≥ 0.

Proof. We need only show that ϕk is in the domain of the closed operator Ñ , and
this can be done directly using the usual smooth–cutoff argument. Note first that
if f = f(r) and φ ∈ Ph then fφ ∈ Ph. Thus Ñ(fϕk) = N(fϕk), and the later can
be expanded by the various formulas given in the second section. Also note that
∇∇fϕk = −∇f ·Dϕk = −

√
2∇f · Aϕk if f = f(r). �



8 ED BUELER

References

[Bue99] Ed Bueler, The heat kernel weighted Hodge Laplacian on noncompact manifolds, Trans.
Amer. Math. Soc. 351 (1999), no. 2, 683–713.

[Gro93] Leonard Gross, Uniqueness of ground states for Schrödinger operators over loop groups,
J. Funct. Anal. 112 (1993), no. 2, 373–441.

[GW00] Fu-Zhou Gong and Feng-Yu Wang, Spectrum estimates on Hilbert bundles with applica-
tions to vector bundles over Riemannian manifolds, Preprint, 2000.

[Hal01] Brian C. Hall, Harmonic analysis with respect to heat kernel measure, Bull. Amer. Math.
Soc. (N.S.) 38 (2001), no. 1, 43–78 (electronic).

[Les00] Matthias Lesch, Essential self-adjointness of symmetric linear relations associated to
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