Collocation approximation of the monodromy operator of periodic, linear DDEs

Ed Bueler¹, Victoria Averina², and *Eric Butcher*³

13 July, 2004 SIAM Annual Meeting 2004, Portland

1=Dept. of Math. Sci., Univ. of Alaska;2=Dept. of Math., Univ. of Minnesota, Twin Cities;3=Dept. of Mech. Engr., Univ. of Alaska.

Thanks

Based on joint work with Venkatesh Deshmukh, Praveen Nindujarla, and Haitao Ma.

Supported in part by NSF Grant No. 0114500.

Thanks to David Gilsinn for organizing this Minisymposium!

Outline

- 1. stability chart examples from machining
- 2. abstractions for periodic, linear DDEs
- 3. Chebyshev collocation
- 4. estimates for ODE initial value problems
- 5. approximation of the monodromy operator

Example 1: Turning

1 DOF model for regenerative vibrations of cutting tool with mass m, stiffness k, and damping c:

$$m\ddot{x} + c\dot{x} + kx = \Delta F_x$$

 $\Delta F_x = \Delta F_x(f)$ is *x*-component of cutting force variation, fcn of chip thickness *f*. Linearizing at prescribed thickness f_0 gives (for k_1 is constant)^{*a*}

$$\Delta F_x \approx k_1 \left(x(t-\tau) - x(t) \right)$$

 $^{a}\tau$ is rotation time of workpiece; $\Omega = 60/\tau$ is rot. rate (RPM)

Example 1: Turning, cont.

QUESTION: Suppose m, c, k are fixed. For which values Ω , k_1 is this turning DDE (linearly) stable^{*a*}?

^aDefinition. A linear, homogeneous DDE is *stable* (i.e. asymptotically stable) if all solutions decay to zero.

Example 1: Turning stability chart

(Based on 150×150 points in parameter plane. Compare to exact chart. For $\Omega \gtrsim 1000$, boundary comes within one point of correct. For $\Omega \lesssim 1000$, problem is stiffness, below.)

Example 2: (Interrupted) milling

1 DOF linearized model for regenerative vibrations:

$$m\ddot{x} + c\dot{x} + kx = wh(t)(x(t-\tau) - x(t))$$

But h(t) has the following nonsmooth, time-dependent form:

QUESTION: Suppose m, c, k all fixed. For which values $\Omega = 60/\tau$, w is this milling DDE stable?

Example 2: Milling stability chart

(Compare to Insperger, et al., *Multiple chatter frequencies in milling processes*, J. Sound Vibration (2003).

Conventions

- We consider *linear, periodic-coefficient DDEs with fixed delays*. We assume rational relations among delays and coefficient periods. (For this talk: only one delay and period=delay.)
- Put in standard first-order form $\dot{\mathbf{y}}(t) = A(t, \epsilon)\mathbf{y}(t) + B(t, \epsilon)\mathbf{y}(t - \tau)$ where A, B have τ -periodic dependence on t and depend continuously on parameters $\epsilon \in \mathbb{R}^d$ (typically d = 1, 2, 3).
- We assume *A*, *B* are *piecewise analytic* functions of *t*.

Our Mission

- Construct a fast and accurate numerical method (based on *Chebyshev collocation*, below) for stability charts for linear, periodic DDE problems with piecewise-analytic coefficients.
- Prove it works. (Prove estimates for accuracy of IVP solutions. Prove estimates for eigenvalues.)
- Build an easy to use MATLAB package to implement it.

(STATUS July 2004: Mostly done including estimates (for constant non-delayed-coefficient cases). MATLAB suite in early version. See web site www.cs.uaf.edu/~bueler/DDEcharts.htm.)

Recall (for linear, periodic DDE)

Initial value problem

 $\dot{\mathbf{y}} = A(t)\mathbf{y} + B(t)\mathbf{y}_{-\tau}, \quad \mathbf{y}(t) = \phi(t) \text{ for } t \in [-\tau, 0]$ has solution (monodromy; delayed FTM): $(U\mathbf{f})(t) = \Phi(t) \left[\mathbf{f}(1) + \int_{-1}^{t} \Phi^{-1}(s)B(s)\mathbf{f}(s) \, ds \right]$

(where $\dot{\Phi} = A(t)\Phi$, $\Phi(0) = I$).

Soln of IVP:

Abstract view of linear, periodic DDE

U is a *compact*^a operator on $C([0, \tau])$.

Our class of DDE are simply linear difference eqns with compact generator in $C([0, \tau])$: $\mathbf{y}_{n+1} = U\mathbf{y}_n$.

Compact ops are (norm-)limits of finite rank operators.

Stability: $\rho(U) < 1$ if and only if DDE is stable.^{*b*}

^{*a*}It is formed from an integral operator and $\mathbf{f} \mapsto \mathbf{f}(1)$, a finite rank operator. ^{*b*}Caveat: this is *eigenvalue* stability. Degree of nonnormality of U does matter.

Chebyshev poly approx: 3 good reasons

- Polynomial and Fourier approximation ("spectral approximation") converges faster than finite diff or finite elem or cubic splines or wavelets on analytic functions.
- Though the coefficients in our DDE are periodic the solutions are not. Thus Fourier not so good. (Also: poly approx can be good on each piece of a piecewise-analytic fcn without generating Gibbs phenomena.)
- Chebyshev points are nearly optimal polynomial interpolation points for minimizing uniform error.

Chebyshev collocation points

Chebyshev poly approx can be implemented by *collocation*. For degree N, Cheb collocation points are

$$t_j = \cos(j\pi/N), \qquad j = 0, \dots, N.$$

(t_j are projections of equally-spaced points on unit circle^{*a*}).

Note $t_j \in [-1, 1]$. (If needed, shift the t_j to interval $[0, \tau]$.)

^{*a*}The *Fourier* collocation points. Cheb collocation can be implemented by FFT.

Cheb spectral differentiation

- **1.** Given f(t) on [-1, 1].
- 2. Construct interpolating polynomial p(t): $p(t_j) = f(t_j)$.
- 3. Find \dot{p} .
- 4. Evaluate it at t_j : $\dot{f}(t_j) \approx \dot{p}(t_j)$.

This gives a matrix approximation of derivative $\frac{d}{dt}$:

$$\dot{f}$$
 $pprox$ \dot{p} (represented by) $D_N v$

Cheb collocation approx of U

Use Cheb matrix approximations: (*i*) $D_N \approx \frac{d}{dt}$ (of a vector-valued fcn); (*ii*) $M_A \approx$ (mult by A(t)); (*iii*) $M_B \approx$ (mult by B(t)). Modify these to incorporate ODE initial condition: $\mathbf{y}(0) = \phi(0)$.

 $\dot{\mathbf{y}} = A(t)\mathbf{y} + B(t)\mathbf{y}_{-\tau}$ with $\mathbf{y}(t) = \phi(t), t \in [-\tau, 0]$

is approximated by

$$D_N \mathbf{v} = M_A \mathbf{v} + M_B \mathbf{w}$$

(here $\mathbf{v} \approx \mathbf{y}, \mathbf{w} \approx \phi$).

Solving for v *is* approximating *U*: $U \approx U_N \equiv (D_N - M_A)^{-1} M_B.$

Example: Scalar DDE

Consider scalar DDE: $\dot{x} = -x + (1/2)x_{-2}$ with N = 3. Then D_N , M_A , M_B , and $U_N = (D_N - M_A)^{-1} M_B$ are 4×4 matrices. Last rows modified to enforce initial condition. D_N , U_N generally dense.

$$M_A = \begin{pmatrix} -1 & & \\ & -1 & \\ & & -1 & \\ & & & 0 \end{pmatrix}, \quad M_B = \begin{pmatrix} 1/2 & & \\ & 1/2 & \\ & & 1/2 & \\ 1 & & 0 \end{pmatrix}$$
$$D_N = \begin{pmatrix} 19/6 & -4 & 4/3 & -1/2 \\ 1 & -1/3 & -1 & 1/3 \\ -1/3 & 1 & 1/3 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad U_N = \begin{pmatrix} 0.2058 & 0.2469 & 0.1152 & 0 \\ 0.1852 & 0.2222 & 0.2037 & 0 \\ 0.6626 & -0.1049 & 0.2510 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Example: Eigs of a scalar DDE

For $\dot{x} = -x + (1/2)x_{-1}$ we compare U_N eigenvalues to exact:

"Exact" *method*: Each root $\mu \in \mathbb{C}$ of characteristic eqn $\mu = -1 + 0.5e^{-\mu}$ is eigenvalue of U. Reduce char eqn to real variable problem. Solve by robust one-variable method (e.g. bisection) to 10^{-14} relative accuracy.

VS

Cheb collocation with N = 29: Compute U_N . Find eigs of U_N .

RESULT: Largest 7 eigenvalues of U_N are each accurate to more than 12 digits.

Example, cont

For remaining 23 eigenvalues, here's the picture:

SUMMARY: Over 100 digits of correct eigenvalues from 30×30 matrix approx of U. Only eigs near $0 \in \mathbb{C}$ are inaccurate (irrelevant for stability).

Cost of a stability chart

Using numerical method to produce $m \times m$ approximation to U, the time to produce a chart is

 $O((\text{# of pixels}) \cdot m^3)$

with standard estimates on QR method for eigenvalues.

m matters! Small is good!

Accuracy of Chebyshev interpolation

Theorem [classical]. Let p be degree N poly for f using N + 1 Cheb colloc pts. If f analytic in a \mathbb{C} -neighborhood R of [-1, 1] then there exists C s. t.

$$||f - p||_{\infty} \le C(S + s)^{-N}$$

where S, s are semi axes of ellipse E s. t. $[-1, 1] \subset E \subset R$.

Moral: If f analytic then p improves by a fixed number of digits per increase by one in N.

Accuracy of DDE collocation soln

Theorem. Consider IVP $\dot{y} = ay + b(t)y_{-\tau}$, $y(t) = \phi(t)$ for $t \in [-\tau, 0]$. Let q be the interpolating poly of delayed term $b\phi$. Find degree N collocation solution p(t), a polynomial. Then

 $\|y - p\|_{\infty} \le c_1 \|q - b\phi\|_{\infty} + c_2 |\dot{p}(0) - a\phi(0) - b(0)\phi(-\tau)|.$

 c_1, c_2 depend on *a* but are O(1) in *N*.

Thus

- Error has two sources: (i) interpolation error for delayed term; (ii) residual error at initial time from difficulty of nonhomogeneous ODE problem.
- *a posteriori* result: Do computation, get *proven* estimate of quality of solution based on result.

Example: accuracy in DDE IVP

Find y(t) on [0, 2] if $\dot{y} = 3y + (t - 1)y_{-2}$, $\phi(t) = 1$.

Estimates for eigenvalues of U

In basis of Chebyshev polynomials $\{T_j\}$, matrix entries of Uon C([-1,1]) can be computed by inner products: $U_{jk} = \langle T_j, UT_k \rangle$.

Note $y = UT_k$ is the solution of an IVP. We use previous *a posteriori* estimate to show $||UT_k - (U_N)T_k||$ small^{*a*} for *k* up to about $\frac{3}{4}N$.

Now use eigenvalue perturbation theory^b to show large eigenvalues of U_N are close to those of U.

^{*a*}Recall U_N is Chebyshev approximation to U.

^{*b*}An extension of the Bauer-Fike theorem to compact operators on Hilbert spaces; need to transfer U to act on Sobolev space H^1_{Cheb} .

Provable eigenvalues of U.

Example: Consider $\dot{y} = -2y + (1 + \sin(3\pi t))y_{-2}$. Let N = 95.

Result: Dots are eigs of U_N ; discs are *proven* error bounds for sufficiently large eigs of U. (If μ is an eig of U and $|\mu| \ge 0.2$ then μ is in one of these discs.) This DDE is *proven stable*.

Size of discs drops exponentially with increasing $N \gtrsim 90$ (this example).

Why one really cares about ${\cal U}$

The interesting systems are *nonlinear* DDEs. The linear, periodic DDEs are just their linearizations. Questions about nonlinear DDE:

- find fixed points and periodic orbits
- nature of bifurcations?

To study the latter question we need good bases for spaces of stable and unstable directions Good approximation to U means good bases for these purposes.

But that's another talk ...

See web site www.cs.uaf.edu/~bueler/DDEcharts.htm.