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Example 1: Turning

ﬁ DOF model for regenerative vibrations of cutting tool with T
mass m, stiffness £, and damping c:

mi + cx + kx = AF,

AF, = AF,(f) is xz-component of cutting force variation, fcn
of chip thickness f. Linearizing at prescribed thickness f;
gives (for k; is constant)?

AF, =k (z(t —7) — z(t))

2T is rotation time of workpiece; {2 = 60/7 is rot. rate (RPM)
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Example 1: Turning, cont.

o .

QUESTION: Suppose m, ¢, k are fixed. For which values €,
k1 is this turning DDE (linearly) stable2?

2 Definition. A linear, homogeneous DDE is stable (i.e. asymptotically stable) if

all solutions decay to zero.



Example 1: Turning stability chart
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cutting coefficient k ’ in N/um

stable
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1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
turning rate Q in rpm

(Based on 150 x 150 points in parameter plane. Compare to exact chart. For Q = 1000,
boundary comes within one point of correct. For 2 < 1000, problem is stiffness, below.)
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Example 2: (Interrupted) milling

- .

DOF linearized model for regenerative vibrations:
mx + ct + kx = wh(t)(x(t — 7) — x(t))
But h(t) has the following nonsmooth, time-dependent form:

x 10

(one tooth tool; p=0.1082 immersion ratio)

h(®)

[
0 pt

QUESTION: Suppose m, ¢, k all fixed. For which values
() = 60/7, w is this milling DDE stable?
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Example 2: Milling stability chart
| -

depth of cut w in mm

stable

0 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

spindle speed Q inrpm x 10*

(Compare to Insperger, et al., Multiple chatter frequencies in milling processes,
J. Sound Vibration (2003).
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Conventions

o .

o We consider linear, periodic-coefficient DDEs with fixed
delays. We assume rational relations among delays
and coefficient periods. (For this talk: only one delay
and period=delay.)

#® Put in standard first-order form

y(t) = A(t,e)y(t) + B(t,e)y(t — 7)
where A, B have r-periodic dependence on ¢ and

depend continuously on parameters ¢ € R¢ (typically
d=1,2,3).

#® We assume A, B are piecewise analytic functions of ¢.
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Our Mission

o .

o Construct a fast and accurate numerical method (based
on Chebyshev collocation, below) for stability charts for
linear, periodic DDE problems with piecewise-analytic
coefficients.

o Prove it works. (Prove estimates for accuracy of VP
solutions. Prove estimates for eigenvalues.)

# Build an easy to use MATLAB package to implement it.

(STATUS July 2004: Mostly done including estimates (for constant
non-delayed-coefficient cases). MATLAB suite in early version. See web
site www.cs.uaf.edu/~bueler/DDEcharts.htm.)
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Recall (for linear, periodic DDE)
-

Initial value problem
y=A{t)y + Blt)y—-, y(t)=o(t)forte[—7,0]
has solution (monodromy; delayed FTM):
(UR)(t) = @(2) |£(1) + [*, O (s) B(s)E(s) ds|
(where & = A(t)®, ®(0) = I).

Soln of IVP:

=

Yn+1 = U¥n, Yo = @




Abstract view of linear, periodic DDE

o .

U is a compact® operator on C([0, 7]).

Our class of DDE are simply linear difference eqgns with
compact generator in C([0,7]): ¥ni1 = Uyn.

Compact ops are (norm-)limits of finite rank operators.

Stability: p(U) < 1 if and only if DDE is stable.”

At is formed from an integral operator and f — f(1), a finite rank operator.
bCaveat: this is eigenvalue stability. Degree of nonnormality of U does matter.

o -

—p. 1



Chebyshev poly approx: 3 good reasons
- -

# Polynomial and Fourier approximation (“spectral
approximation”) converges faster than finite diff or finite
elem or cubic splines or wavelets on analytic functions.

# Though the coefficients in our DDE are periodic the
solutions are not. Thus Fourier not so good.
(Also: poly approx can be good on each piece of a
piecewise-analytic fcn without generating Gibbs
phenomena.)

o Chebyshev points are nearly optimal polynomial
Interpolation points for minimizing uniform error.
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Chebyshev collocation points

=

fChebyshev poly approx can be implemented by collocation.
For degree N, Cheb collocation points are
t; = cos(jm/N), j7=0,...,N.
(t; are projections of equally-spaced points on unit circle?).
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Note ¢; € [—1, 1]. (If needed, shift the ¢, to interval |0, 7].)

?The Fourier collocation points. Cheb collocation can be implemented by FFT.

—p. 1



Cheb spectral differentiation
-

1. Given f(t) on [—1,1].
2. CGonstruct interpolating polynomial p(t): p(t;) = f(t;).
3. Find p.

4. Evaluate it at t;: f(t;) =~ p(t;).

This gives a matrix approximation of derivative %:

: . (represented by)
f ~ p = Dy

.



Cheb collocation approx of U
N d

Use Cheb matrix approximations: (/) Dy ~ 2 (of a
vector-valued fcn); (i) M4 ~ (mult by A(t)); (iiil) Mg ~ (mult
by B(t)). Modify these to incorporate ODE initial condition:

y(0) = ¢(0).
y = A(t)y + B(t)y - with y(t) = ¢(t),t € [-7,0]
IS approximated by

Dyv = Myav + Mpw

(here vy, w= ¢).

Solving for v is approximating U
L U%UNE(DN—MA)_IMB.

=
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Example: Scalar DDE

|7Consider scalar DDE: z = —z 4+ (1/2)x_o with N = 3. Then Dy, M4, MB,T

and Uy = (Dy — MA)_1 Mg are 4 x 4 matrices. Last rows modified to
enforce initial condition. Dy, Uy generally dense.

(19/6
1
~1/3

(-1

—4
~1/3
1
0

)

(1/2

\ 1

\ 1

(0.2058
0.1852
0.6626

0.1152 0)
0.2037 0
—0.1049  0.2510 0O

1/2
1/2
0)
0.2469
0.2222
0
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Example: Eigs of a scalar DDE
-

Forz = —x + (1/2)x_; we compare Uy eigenvalues to exact:

=

“Exact” method: Each root ;. € C of characteristic egn

= —1-+0.5e7* is eigenvalue of U. Reduce char egn to real
variable problem. Solve by robust one-variable method

(e.g. bisection) to 10714 relative accuracy.

VS

Cheb collocation with N = 29: Compute Uy. Find eigs of Uy.

RESULT: Largest 7 eigenvalues of Uy are each accurate to

~ more than 12 digits. .
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Example, cont

. .

or remaining 23 eigenvalues, here's the picture:

0.025

exact eigs
O approximate eigs

0.02 -

0.015

0.01

0.005 -

Im

0OF

-0.005

-0.01

-0.015

-0.02

-0.025 1 1 1 1 1 ]
-3 -2.5 -2 -15 -1 -0.5 0
R 10°°

SUMMARY: Over 100 digits of correct eigenvalues from
30 x 30 matrix approx of U.
LOnIy eigs near 0 € C are inaccurate (irrelevant for stability). J

—p. 1



Cost of a stability chart
-

sting numerical method to produce m x m approximation to
U, the time to produce a chart is

O((# of pixels) - m?)

with standard estimates on QR method for eigenvalues.

m matters! Small is good!
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Accuracy of Chebyshev interpolation

|7Theorem [classical]. Let p be degree N poly for f using N + 1 Cheb colloc
pts. If f analytic in a C-neighborhood R of [—1, 1] then there exists C' s. t.

=

If = plloo <C(S+5)~"

where S, s are semi axes of ellipse £ s.t. [-1,1] C E C R.
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Moral: If f analytic then p improves by a fixed number of digits
Lper increase by one in V. J
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Accuracy of DDE collocation soln

fTheorem. Consider IVP ¢ = ay + b(t)y_-, y(t) = o(t) for T
t € |[—7,0]. Let ¢ be the interpolating poly of delayed term b¢.
Find degree N collocation solution p(t), a polynomial. Then

ly = pllos < cillg — bPlloo + c2|P(0) — ag(0) — b(0)p(—7)].

c1,co depend on a but are O(1) in N.
Thus

® Error has two sources: (i) interpolation error for delayed term; (/i)
residual error at initial time from difficulty of nonhomogeneous ODE

problem.

® a posteriori result: Do computation, get proven estimate of quality of

\— solution based on result. J

—p.c



Example: accuracy in DDE IVP
-

Find y(t) on [0,2]if §=3y+ (t— 1)y s, ¢(t)=1.
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Estimates for eigenvalues of U

- .

In basis of Chebyshev polynomials {77}, matrix entries of U
on C'([—1, 1]) can be computed by inner products:
Ui, = (T;,UT).

Note y = UT}, is the solution of an IVP. We use previous a
posteriori estimate to show ||{UTy, — (Uy)Tx|| small® for k& up to
about 2 N.

Now use eigenvalue perturbation theory® to show large
eigenvalues of Uy are close to those of U.

?Recall Uy is Chebyshev approximation to U.
SAn extension of the Bauer-Fike theorem to compact operators on Hilbert

spaces; need to transfer U to act on Sobolev space H éh ob-
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Provable eigenvalues of U.

o .

Example: Consider y = —2y + (1 + sin(37t))y_». Let N = 95.

Result: Dots are eigs of Uy ; discs are proven error bounds
for sufficiently large eigs of U. (If i is an eig of U and |u| > 0.2
then 1 is in one of these discs.) This DDE is proven stable.
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~ 7
~ 7
1 -05 0 0.5 1

Size of discs drops exponentially with increasing N 2 90 (this example).
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Why one really cares about U

fThe interesting systems are nonlinear DDEs. The linear,
periodic DDEs are just their linearizations.
Questions about nonlinear DDE:

# find fixed points and periodic orbits
o nature of bifurcations?

To study the latter question we need good

bases for spaces of stable and unstable directions
Good approximation to U means good bases for these
PUrpoSESs.

But that’s another talk . ..

See web site www.cs.uaf.edu/~bueler/DDEcharts.htm.

.
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