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Outline
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Example 1: Turning

1 DOF model for regenerative vibrations of cutting tool with
mass m, stiffness k, and damping c:

mẍ+ cẋ+ kx = ∆Fx

∆Fx = ∆Fx(f) is x-component of cutting force variation, fcn
of chip thickness f . Linearizing at prescribed thickness f0
gives (for k1 is constant)a

∆Fx ≈ k1 (x(t− τ)− x(t))

aτ is rotation time of workpiece; Ω = 60/τ is rot. rate (RPM)

– p. 4



Example 1: Turning, cont.

QUESTION: Suppose m, c, k are fixed. For which values Ω,
k1 is this turning DDE (linearly) stablea?

aDefinition. A linear, homogeneous DDE is stable (i.e. asymptotically stable) if

all solutions decay to zero.
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Example 1: Turning stability chart
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(Based on 150× 150 points in parameter plane. Compare to exact chart. For Ω & 1000,
boundary comes within one point of correct. For Ω . 1000, problem is stiffness, below.)
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Example 2: (Interrupted) milling

1 DOF linearized model for regenerative vibrations:
mẍ+ cẋ+ kx = wh(t)(x(t− τ)− x(t))

But h(t) has the following nonsmooth, time-dependent form:
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(one tooth tool;  ρ=0.1082 immersion ratio) 

QUESTION: Suppose m, c, k all fixed. For which values
Ω = 60/τ , w is this milling DDE stable?
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Example 2: Milling stability chart
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(Compare to Insperger, et al., Multiple chatter frequencies in milling processes,
J. Sound Vibration (2003).
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Conventions

We consider linear, periodic-coefficient DDEs with fixed
delays. We assume rational relations among delays
and coefficient periods. (For this talk: only one delay
and period=delay.)

Put in standard first-order form
ẏ(t) = A(t, ε)y(t) +B(t, ε)y(t− τ)

where A,B have τ -periodic dependence on t and
depend continuously on parameters ε ∈ R

d (typically
d = 1, 2, 3).

We assume A,B are piecewise analytic functions of t.
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Our Mission

Construct a fast and accurate numerical method (based
on Chebyshev collocation, below) for stability charts for
linear, periodic DDE problems with piecewise-analytic
coefficients.

Prove it works. (Prove estimates for accuracy of IVP
solutions. Prove estimates for eigenvalues.)

Build an easy to use MATLAB package to implement it.

(STATUS July 2004: Mostly done including estimates (for constant

non-delayed-coefficient cases). MATLAB suite in early version. See web

site www.cs.uaf.edu/∼bueler/DDEcharts.htm.)
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Recall (for linear, periodic DDE)

Initial value problem
ẏ = A(t)y +B(t)y−τ , y(t) = φ(t) for t ∈ [−τ, 0]

has solution (monodromy; delayed FTM):
(U f)(t) = Φ(t)

[

f(1) +
∫ t

−1
Φ−1(s)B(s)f(s) ds

]

(where Φ̇ = A(t)Φ, Φ(0) = I).

Soln of IVP:
yn+1 = Uyn, y0 = φ

−1 0 1 2 3
t

y
0
 y

1
 y

2
 y

3
 

U U U 

– p. 11



Abstract view of linear, periodic DDE

U is a compact a operator on C([0, τ ]).

Our class of DDE are simply linear difference eqns with
compact generator in C([0, τ ]): yn+1 = Uyn.

Compact ops are (norm-)limits of finite rank operators.

Stability: ρ(U) < 1 if and only if DDE is stable.b

aIt is formed from an integral operator and f 7→ f(1), a finite rank operator.
bCaveat: this is eigenvalue stability. Degree of nonnormality of U does matter.
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Chebyshev poly approx: 3 good reasons

Polynomial and Fourier approximation (“spectral
approximation”) converges faster than finite diff or finite
elem or cubic splines or wavelets on analytic functions.

Though the coefficients in our DDE are periodic the
solutions are not. Thus Fourier not so good.
(Also: poly approx can be good on each piece of a
piecewise-analytic fcn without generating Gibbs
phenomena.)

Chebyshev points are nearly optimal polynomial
interpolation points for minimizing uniform error.
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Chebyshev collocation points

Chebyshev poly approx can be implemented by collocation.
For degree N , Cheb collocation points are

tj = cos(jπ/N), j = 0, . . . , N.

(tj are projections of equally-spaced points on unit circlea).

Note tj ∈ [−1, 1]. (If needed, shift the tj to interval [0, τ ].)
aThe Fourier collocation points. Cheb collocation can be implemented by FFT.
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Cheb spectral differentiation

1. Given f(t) on [−1, 1].

2. Construct interpolating polynomial p(t): p(tj) = f(tj).

3. Find ṗ.

4. Evaluate it at tj: ḟ(tj) ≈ ṗ(tj).

This gives a matrix approximation of derivative d
dt :

ḟ ≈ ṗ
(represented by)

= DNv
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Cheb collocation approx of U

Use Cheb matrix approximations: (i) DN ≈ d
dt (of a

vector-valued fcn); (ii) MA ≈ (mult by A(t)); (iii) MB ≈ (mult
by B(t)). Modify these to incorporate ODE initial condition:
y(0) = φ(0).

ẏ = A(t)y +B(t)y
−τ with y(t) = φ(t), t ∈ [−τ, 0]

is approximated by

DNv = MAv +MBw

(here v ≈ y, w ≈ φ).

Solving for v is approximating U :
U ≈ UN ≡ (DN −MA)

−1 MB.
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Example: Scalar DDE

Consider scalar DDE: ẋ = −x + (1/2)x−2 with N = 3. Then DN , MA, MB ,
and UN = (DN −MA)

−1
MB are 4× 4 matrices. Last rows modified to

enforce initial condition. DN , UN generally dense.

MA =















−1

−1

−1

0















, MB =















1/2

1/2

1/2

1 0















DN =















19/6 −4 4/3 −1/2

1 −1/3 −1 1/3

−1/3 1 1/3 −1

0 0 0 1















, UN =















0.2058 0.2469 0.1152 0

0.1852 0.2222 0.2037 0

0.6626 −0.1049 0.2510 0

1 0 0 0
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Example: Eigs of a scalar DDE

For ẋ = −x+ (1/2)x−1 we compare UN eigenvalues to exact:

“Exact” method : Each root µ ∈ C of characteristic eqn
µ = −1 + 0.5e−µ is eigenvalue of U . Reduce char eqn to real
variable problem. Solve by robust one-variable method
(e.g. bisection) to 10−14 relative accuracy.

vs

Cheb collocation with N = 29: Compute UN . Find eigs of UN .

RESULT: Largest 7 eigenvalues of UN are each accurate to
more than 12 digits.
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Example, cont

For remaining 23 eigenvalues, here’s the picture:
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SUMMARY: Over 100 digits of correct eigenvalues from
30× 30 matrix approx of U .
Only eigs near 0 ∈ C are inaccurate (irrelevant for stability).
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Cost of a stability chart

Using numerical method to produce m×m approximation to
U , the time to produce a chart is

O((# of pixels) ·m3)

with standard estimates on QR method for eigenvalues.

m matters! Small is good!
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Accuracy of Chebyshev interpolation

Theorem [classical]. Let p be degree N poly for f using N + 1 Cheb colloc
pts. If f analytic in a C-neighborhood R of [−1, 1] then there exists C s. t.

‖f − p‖∞ ≤ C(S + s)−N

where S, s are semi axes of ellipse E s. t. [−1, 1] ⊂ E ⊂ R.

R 

E 

+1 −1 

s 

S 

C 

Moral: If f analytic then p improves by a fixed number of digits
per increase by one in N .
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Accuracy of DDE collocation soln

Theorem. Consider IVP ẏ = ay + b(t)y−τ , y(t) = φ(t) for
t ∈ [−τ, 0]. Let q be the interpolating poly of delayed term bφ.
Find degree N collocation solution p(t), a polynomial. Then

‖y − p‖∞ ≤ c1‖q − bφ‖∞ + c2|ṗ(0)− aφ(0)− b(0)φ(−τ)|.

c1, c2 depend on a but are O(1) in N .

Thus
Error has two sources: (i) interpolation error for delayed term; (ii)
residual error at initial time from difficulty of nonhomogeneous ODE
problem.

a posteriori result: Do computation, get proven estimate of quality of
solution based on result.
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Example: accuracy in DDE IVP

Find y(t) on [0, 2] if ẏ = 3y + (t− 1)y
−2, φ(t) = 1.
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Estimates for eigenvalues of U

In basis of Chebyshev polynomials {Tj}, matrix entries of U
on C([−1, 1]) can be computed by inner products:
Ujk = 〈Tj, UTk〉.

Note y = UTk is the solution of an IVP. We use previous a
posteriori estimate to show ‖UTk − (UN)Tk‖ smalla for k up to
about 3

4
N .

Now use eigenvalue perturbation theoryb to show large
eigenvalues of UN are close to those of U .

aRecall UN is Chebyshev approximation to U .
bAn extension of the Bauer-Fike theorem to compact operators on Hilbert

spaces; need to transfer U to act on Sobolev space H1
Cheb.
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Provable eigenvalues of U .

Example: Consider ẏ = −2y + (1 + sin(3πt))y−2. Let N = 95.

Result: Dots are eigs of UN ; discs are proven error bounds
for sufficiently large eigs of U . (If µ is an eig of U and |µ| ≥ 0.2

then µ is in one of these discs.) This DDE is proven stable.
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Size of discs drops exponentially with increasing N & 90 (this example).
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Why one really cares about U

The interesting systems are nonlinear DDEs. The linear,
periodic DDEs are just their linearizations.
Questions about nonlinear DDE:

find fixed points and periodic orbits

nature of bifurcations?

To study the latter question we need good
bases for spaces of stable and unstable directions

Good approximation to U means good bases for these
purposes.

But that’s another talk . . .

See web site www.cs.uaf.edu/∼bueler/DDEcharts.htm.
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