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Example: regenerative vibrations in milling

1 DOF linearized model:
mẍ + cẋ + kx = wh(t) [x(t − τ) − x(t)]

where h(t) has nonsmooth, time-dependent form:
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(one tooth tool;  ρ=0.1082 immersion ratio) 

QUESTION: Suppose m, c, k fixed. For which values of
parameters Ω = 60/τ and w

is this milling DDE stable?
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Example, cont.: Milling stability chart
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(Compare to Insperger, et al., Multiple chatter frequencies in milling processes,
J. Sound Vibration (2003).
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Conventions

We consider only linear, periodic-coefficient DDEs with
fixed delays. For this talk: one delay and period=delay.

notation: y−τ (t) = y(t − τ)

Put in standard first-order system form

ẏ(t) = A(t, ǫ)y(t) + B(t, ǫ)y−τ (t)

where A,B have τ -periodic dependence on t and
depend continuously on parameters ǫ ∈ R

d.
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Our project

We have

created a fast and accurate numerical method based on
Chebyshev collocation for solving initial value problems
and for computing stability charts for linear, periodic
DDE problems;

proven it works by finding a posteriori estimates on both
the IVPs and on the computed eigenvalues;

and implemented it as an easy to use MATLAB package:

www.cs.uaf.edu/∼bueler/DDEcharts.htm
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Monodromy operator U of DDE

For linear DDE the initial value problem
ẏ = A(t)y + B(t)y−τ , y(t) = φ(t) for t ∈ [−τ, 0]

has solution y = Uφ by a monodromy operator U :

(Uφ)(t) = Φ(t)
[

φ(0) +
∫ t

0
Φ−1(s)B(s)φ(s − τ) ds

]

where Φ(t) is fundamental soln of ODE: Φ̇ = A(t)Φ, Φ(0) = I.

Periodic coefficients A(t), B(t) then implies abstract view:

yn+1 = Uyn,

y0 = φ
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Abstract view of linear, periodic DDE

U is a compact operator on C([0, τ ])

our class of DDE are simply linear difference eqns with
compact generator in C([0, τ ]): yn+1 = Uyn

compact operators are (norm-)limits of finite rank
operators

stability: ρ(U) < 1 if and only if DDE is (asymptotically)
stablea

Next : numerical approximation of the DDE and of U

aCaveat: Eigenvalues determine only ultimate stability. U is typically nonnormal

so much solution growth is possible even when ρ(U) < 1.
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Chebyshev poly approx: 3 good reasons

polynomial and Fourier approximation (“spectral
approximation”) converges faster than finite diff or finite
elem or cubic splines or wavelets on analytic functions

Though the coefficients in our DDE are periodic the
solutions are not. Thus Fourier not so good.

(Also: poly approx can be good on each piece of a
piecewise-analytic fcn without generating Gibbs
phenomena.)

Chebyshev points are nearly optimal polynomial
interpolation points for minimizing uniform error
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Chebyshev collocation points

Chebyshev poly approx can be implemented by collocation.
Cheb collocation (i.e. spectral differentiation) can be
implemented by FFT.
For degree N , Cheb collocation points are

tj = cos(jπ/N), j = 0, . . . , N.

Note tj ∈ [−1, 1]. If needed, shift and scale the collocation points to interval [0, τ ].
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Spectral convergence of Cheb interpolation

Theorem. If f is analytic on [−1, 1] and if pN is the N th
degree polynomial interpolant of f at the Cheb collocation
points then there is 0 ≤ ρ < 1 and C > 0 so that

‖f − pN‖∞ ≤ C ρN

for all N ≥ 1.
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Cheb collocation approx of U

ẏ = A(t)y + B(t)y−τ with y(t) = φ(t), t ∈ [−τ, 0]

is approximated by

DNv = MAv + MBw

where v ≈ y, w ≈ φ are numerical approximations,
v, w ∈ C

N+1,
DN is the spectral differentiation matrix, and
MA, MB are approximate multiplication operators.

Solving for v approximates U itself:

U ≈ UN ≡ (DN − MA)−1 MB
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Example: Eigs of a scalar DDE

For ẋ = −x + (1/2)x−1 we compare:

“Exact” method: Each root µ ∈ C of characteristic eqn
µ = −1 + 0.5e−µ is eigenvalue of U . Reduce char eqn to real
variable problem. Solve by robust one-variable method
(e.g. bisection) to 10−14 relative accuracy.

vs

Cheb collocation with N = 29: Compute UN . Find eigs of
UN by QR iteration.
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Example, cont
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RESULT: Over 100 digits of correct eigenvalues from
30 × 30 matrix approx of U .
Only eigs near 0 ∈ C are inaccurate (irrelevant for stability).
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Cost of a stability chart

Using an m × m matrix approximation to U ,

time to produce a chart = O((# of pixels) · m3)

with standard estimates on QR method for eigenvalues.

Thus m matters. For us, m = d(N + 1).
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a posteriori estimate for DDE IVPs

Theorem. Consider IVP ẏ = A(t)y + B(t)y−τ , y(t) = φ(t) for
t ∈ [−τ, 0]. Find collocation solution p, a degree N polynomial.
Then there is C which depend on a(t) but is O(1) in N so that

‖y − p‖∞ ≤ C
(

‖IN (Ap) − Ap‖∞

+ ‖IN (Bφ) − Bφ‖∞

+ |ṗ(0) − A(0)φ(0) − B(0)φ(−τ)|
)

where IN(f) is interpolating polynomial of f .

Thus error has two sources: (i) interpolation errors; (ii)
residual error at initial time.

Right-hand side decays exponentially in N in practice.
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a posteriori estimates of eigenvalues of U

Theorem. Let N ≥ 1. Suppose coefficients A(t), B(t) are
analytic d × d matrix-valued functions.

Let δ > 0. Suppose Ux = µx for x ∈ H1, ‖x‖ = 1, and
|µ| ≥ δ. Assume UN = V ΛV −1 with Λ diagonal. Let λi be the
eigenvalues of UN ; order by decreasing magnitude.

There are N positive quantities ωk, which have a posteriori
estimates, and which decay exponentially with N in practice,
so that

min |µ − λi| ≤ min {ω1, . . . , ωN} cond(V ).
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Provable eigenvalues of U .

Example: Consider ẍ + ẋ + (1 + cos(πt))x = 0.5x(t − 2). This is a
damped Mathieu equation. Let N = 73 and compute UN . Apply previous
theorem with δ = 0.3.

Result: min |µ − λi| ≤ 0.03019. In figure, dots are eigs of UN ; discs are
proven error bounds for eigs bigger than δ.
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Proposition (with a posteriori proof): If µ is an eig of U and |µ| ≥ 0.3 then
µ is in one of the discs.
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eigenvalue perturbation on Hilbert spaces

In our case U ∈ L(H1) has finite rank approximation UN ,
also acting on H1. We diagonalize

UN = V ΛV −1,

and we compute the condition number of V .

Theorem. (Bauer-Fike for Hilbert spaces) If A,B ∈ L(H), if
Bx = µx and A = V ΛV −1 with Λ a multiplication operator on
L2 and V an isomorphism of Hilbert spaces then

min
λ∈σ(A)

|µ − λ| ≤ ‖V ‖‖V ‖−1‖(B − A)x‖.

For us: A = UN , B = U .
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eigenvalue perturbation and a posteriori estimates

In our case Ux, UNx are exact and approximate solns to
IVPs.

So ‖(U − UN )x‖ has an a posteriori estimate. In fact, ωk in
previous theorem are (proportional to) the values
‖(U − UN )Tk‖ where Tk is the kth Chebyshev polynomial.

That is, we prove that if one can solve the DDE accurately
with the first N Chebyshev polynomials as initial functions
then the numerical eigenvalues are accurate.
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Why people really care about U

Interesting systems are nonlinear DDEs. (Linear, periodic
DDEs are (usually) their linearizations about periodic
orbits.)

Questions about nonlinear DDE:

1. were are periodic orbits?

2. nature of bifurcations?

Assuming question 1 is solved, for question 2 we need
good bases for stable and unstable directions.

Good approximations to the monodromy operator of the
linearization therefore desirable for nonlinear analysis, too.
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