Reliable stability charts for periodic delay differential equations

Ed Bueler¹, Eric Butcher², and Victoria Averina³

12 Feb., SIAM CSE 2005, Orlando

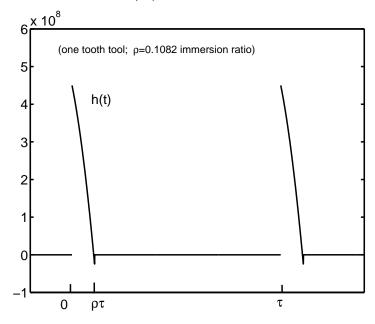
1=Dept of Mathematical Sciences, Univ of Alaska, Fairbanks, 2=Dept of Mech Engineering, UAF, 3=Dept of Mathematics, Univ of Minnesota

Example: regenerative vibrations in milling

1 DOF linearized model:

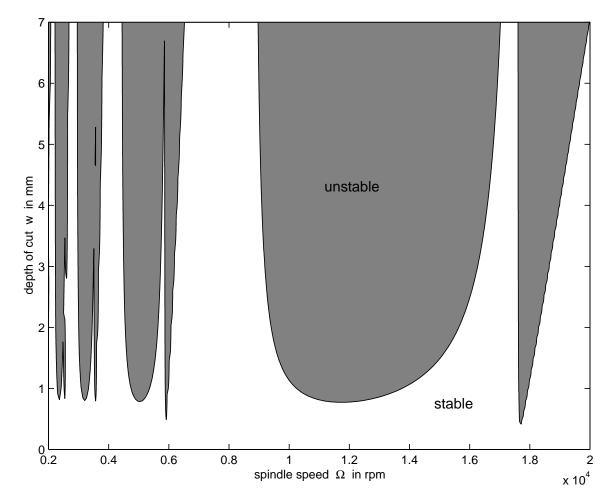
$$m\ddot{x} + c\dot{x} + kx = wh(t)\left[x(t-\tau) - x(t)\right]$$

where h(t) has nonsmooth, time-dependent form:



QUESTION: Suppose m, c, k fixed. For which values of parameters $\Omega = 60/\tau$ and w is this milling DDE stable?

Example, cont.: Milling stability chart



(Compare to Insperger, et al., *Multiple chatter frequencies in milling processes*, J. Sound Vibration (2003).

Conventions

We consider only *linear, periodic-coefficient DDEs with fixed delays*. For this talk: one delay and period=delay.

• notation:
$$y_{-\tau}(t) = y(t - \tau)$$

Put in standard first-order system form

$$\dot{y}(t) = A(t,\epsilon)y(t) + B(t,\epsilon)y_{-\tau}(t)$$

where A, B have τ -periodic dependence on t and depend continuously on parameters $\epsilon \in \mathbb{R}^d$.

Our project

We have

- created a fast and accurate numerical method based on *Chebyshev collocation* for solving initial value problems *and* for computing stability charts for linear, periodic DDE problems;
- proven it works by finding a posteriori estimates on both the IVPs and on the computed eigenvalues;
- and implemented it as an easy to use MATLAB package:

```
www.cs.uaf.edu/~bueler/DDEcharts.htm
```

Monodromy operator $U \ {\rm of} \ {\rm DDE}$

For linear DDE the initial value problem

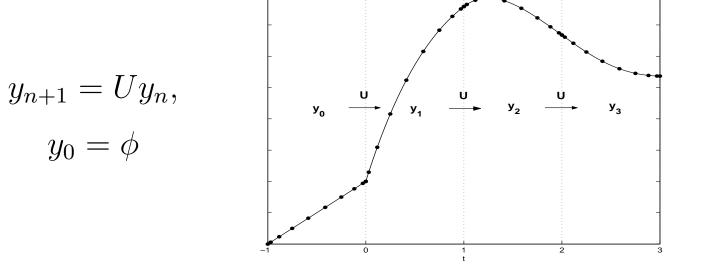
 $\dot{y} = A(t)y + B(t)y_{-\tau}, \quad y(t) = \phi(t) \text{ for } t \in [-\tau, 0]$

has solution $y = U\phi$ by a monodromy operator U:

$$(U\phi)(t) = \Phi(t) \left[\phi(0) + \int_0^t \Phi^{-1}(s) B(s) \phi(s-\tau) \, ds \right]$$

where $\Phi(t)$ is fundamental soln of ODE: $\dot{\Phi} = A(t)\Phi$, $\Phi(0) = I$.

Periodic coefficients A(t), B(t) then implies abstract view:



Abstract view of linear, periodic DDE

- U is a *compact* operator on $C([0, \tau])$
- our class of DDE are simply linear difference eqns with compact generator in $C([0, \tau])$: $y_{n+1} = Uy_n$
- compact operators are (norm-)limits of finite rank operators
- stability: $\rho(U) < 1$ if and only if DDE is (asymptotically) stable^a

Next: numerical approximation of the DDE and of U

^aCaveat: Eigenvalues determine only ultimate stability. U is typically nonnormal so much solution growth is possible even when $\rho(U) < 1$.

Chebyshev poly approx: 3 good reasons

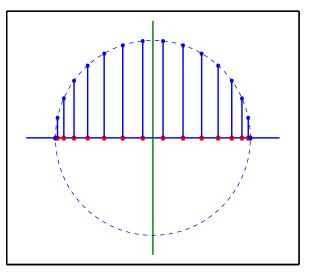
- polynomial and Fourier approximation ("spectral approximation") converges faster than finite diff or finite elem or cubic splines or wavelets on analytic functions
- Though the coefficients in our DDE are periodic the solutions are not. Thus Fourier not so good. (Also: poly approx can be good on each piece of a piecewise-analytic fcn without generating Gibbs phenomena.)
- Chebyshev points are nearly optimal polynomial interpolation points for minimizing uniform error

Chebyshev collocation points

Chebyshev poly approx can be implemented by *collocation*. Cheb collocation (i.e. spectral differentiation) can be implemented by FFT.

For degree N, Cheb collocation points are

$$t_j = \cos(j\pi/N), \qquad j = 0, \dots, N.$$



Note $t_j \in [-1, 1]$. If needed, shift and scale the collocation points to interval $[0, \tau]$.

Spectral convergence of Cheb interpolation

Theorem. If *f* is analytic on [-1, 1] and if p_N is the *N*th degree polynomial interpolant of *f* at the Cheb collocation points then there is $0 \le \rho < 1$ and C > 0 so that

$$\|f - p_N\|_{\infty} \le C \,\rho^N$$

for all $N \ge 1$.

Cheb collocation approx of ${\cal U}$

 $\dot{y} = A(t)y + B(t)y_{-\tau}$ with $y(t) = \phi(t), t \in [-\tau, 0]$

is approximated by

 $D_N v = M_A v + M_B w$

where $v \approx y$, $w \approx \phi$ are numerical approximations, $v, w \in \mathbb{C}^{N+1}$,

 D_N is the spectral differentiation matrix, and M_A , M_B are approximate multiplication operators.

Solving for v approximates U itself:

$$U \approx U_N \equiv \left(D_N - M_A\right)^{-1} M_B$$

Example: Eigs of a scalar DDE

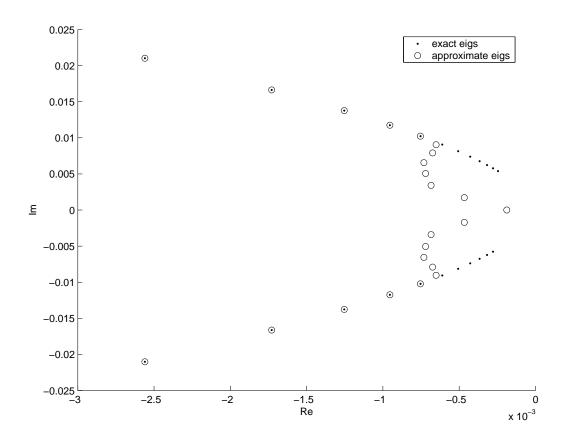
For $\dot{x} = -x + (1/2)x_{-1}$ we compare:

"Exact" method: Each root $\mu \in \mathbb{C}$ of characteristic eqn $\mu = -1 + 0.5e^{-\mu}$ is eigenvalue of *U*. Reduce char eqn to real variable problem. Solve by robust one-variable method (e.g. bisection) to 10^{-14} relative accuracy.

VS

Cheb collocation with N = 29: Compute U_N . Find eigs of U_N by QR iteration.

Example, cont



RESULT: Over 100 digits of correct eigenvalues from 30×30 matrix approx of U.

Only eigs near $0 \in \mathbb{C}$ are inaccurate (irrelevant for stability).

Cost of a stability chart

Using an $m \times m$ matrix approximation to U,

time to produce a chart =
$$O((\# \text{ of pixels}) \cdot m^3)$$

with standard estimates on QR method for eigenvalues.

Thus m matters. For us, m = d(N+1).

a posteriori estimate for DDE IVPs

Theorem. Consider IVP $\dot{y} = A(t)y + B(t)y_{-\tau}$, $y(t) = \phi(t)$ for $t \in [-\tau, 0]$. Find collocation solution p, a degree N polynomial. Then there is C which depend on a(t) but is O(1) in N so that

$$||y - p||_{\infty} \le C \Big(||I_N(Ap) - Ap||_{\infty} + ||I_N(B\phi) - B\phi||_{\infty} + |\dot{p}(0) - A(0)\phi(0) - B(0)\phi(-\tau)| \Big)$$

where $I_N(f)$ is interpolating polynomial of f.

Thus error has two sources: (i) interpolation errors; (*ii*) residual error at initial time.

Right-hand side decays exponentially in N in practice.

a posteriori estimates of eigenvalues of U

Theorem. Let $N \ge 1$. Suppose coefficients A(t), B(t) are analytic $d \times d$ matrix-valued functions.

Let $\delta > 0$. Suppose $Ux = \mu x$ for $x \in H^1$, ||x|| = 1, and $|\mu| \ge \delta$. Assume $U_N = V\Lambda V^{-1}$ with Λ diagonal. Let λ_i be the eigenvalues of U_N ; order by decreasing magnitude.

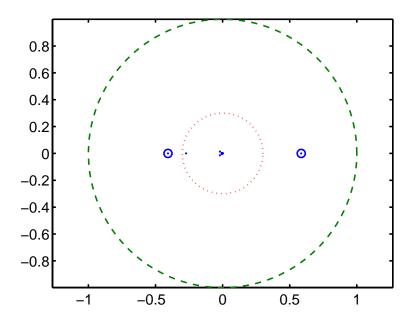
There are *N* positive quantities ω_k , which have *a posteriori* estimates, and which decay exponentially with *N* in practice, so that

$$\min |\mu - \lambda_i| \le \min \{\omega_1, \dots, \omega_N\} \operatorname{cond}(V).$$

$\label{eq:provable eigenvalues of } U.$

Example: Consider $\ddot{x} + \dot{x} + (1 + \cos(\pi t))x = 0.5x(t - 2)$. This is a damped Mathieu equation. Let N = 73 and compute U_N . Apply previous theorem with $\delta = 0.3$.

Result: min $|\mu - \lambda_i| \le 0.03019$. In figure, dots are eigs of U_N ; discs are proven error bounds for eigs bigger than δ .



Proposition (with *a posteriori* proof): If μ is an eig of U and $|\mu| \ge 0.3$ then μ is in one of the discs.

eigenvalue perturbation on Hilbert spaces

In our case $U \in \mathcal{L}(H^1)$ has finite rank approximation U_N , also acting on H^1 . We diagonalize

 $U_N = V\Lambda V^{-1},$

and we compute the condition number of V.

Theorem. (Bauer-Fike for Hilbert spaces) If $A, B \in \mathcal{L}(\mathcal{H})$, if $Bx = \mu x$ and $A = V\Lambda V^{-1}$ with Λ a multiplication operator on L^2 and V an isomorphism of Hilbert spaces then

$$\min_{\lambda \in \sigma(A)} |\mu - \lambda| \le \|V\| \|V\|^{-1} \|(B - A)x\|.$$

For us: $A = U_N$, B = U.

eigenvalue perturbation and a posteriori estimates

In our case Ux, U_Nx are exact and approximate solns to IVPs.

So $||(U - U_N)x||$ has an *a posteriori* estimate. In fact, ω_k in previous theorem are (proportional to) the values $||(U - U_N)T_k||$ where T_k is the *k*th Chebyshev polynomial.

That is, we prove that if one can solve the DDE accurately with the first N Chebyshev polynomials as initial functions then the numerical eigenvalues are accurate.

Why people really care about ${\cal U}$

Interesting systems are *nonlinear* DDEs. (Linear, periodic DDEs are (usually) their linearizations about periodic orbits.)

Questions about nonlinear DDE:

- 1. were are periodic orbits?
- 2. nature of bifurcations?

Assuming question 1 is solved, for question 2 we need good bases for stable and unstable directions.

Good approximations to the monodromy operator of the linearization therefore desirable for nonlinear analysis, too.