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Example: regenerative vibrationsin milling

) .

1 DOF linearized model:
m + ct + kx = wh(t) [x(t — 1) — x(t)]
where h(t) has nonsmooth, time-dependent form:
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(one tooth tool; p=0.1082 immersion ratio)
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QUESTION: Suppose m, ¢, k fixed. For which values of
parameters (2 = 60/7 and w
us this milling DDE stable? J
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Example, cont.: Milling stability chart
| -

depth of cut w in mm

stable

0 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

spindle speed Q inrpm x 10°

(Compare to Insperger, et al., Multiple chatter frequencies in milling processes,
J. Sound Vibration (2003).
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Conventions

- .

# We consider only linear, periodic-coefficient DDEs with
fixed delays. For this talk: one delay and period=delay.

& notation:  y_,(t) = y(t —7)

# Put in standard first-order system form

y(t) = A(t, e)y(t) + B(t, €)y—~(t)

where A, B have r-periodic dependence on ¢ and
depend continuously on parameters ¢ € R?.



Our project
W

# created a fast and accurate numerical method based on
Chebyshev collocation for solving initial value problems
and for computing stability charts for linear, periodic
DDE problems;

e have

# proven it works by finding a posteriori estimates on both
the IVPs and on the computed eigenvalues,

# and implemented it as an easy to use MATLAB package:

www. ¢S. uaf . edu/ ~buel er/ DDEcharts. ht m



M onodromy operator U of DDE
-

For linear DDE the initial value problem

y=At)y+Bt)y—-, y(t)=9(t)forte[-7,0]
has solution y = U¢ by a monodromy operator U

(U)(t) = (1) |#(0) + fy @ (s)B(s)o(s — 7) ds|
where &(t) is fundamental soln of ODE: & = A(t)®, ®(0) = I.

=

Periodic coefficients A(t), B(t) then implies abstract view:




Abstract view of linear, periodic DDE
B o

# U is a compact operator on C([0, 7])

#® our class of DDE are simply linear difference eqns with
compact generator in C(|0,7)): ypnr1 = Uy,

#® compact operators are (norm-)limits of finite rank
operators

# stability: p(U) < 1 if and only if DDE is (asymptotically)
stable®

Next: numerical approximation of the DDE and of U

“Caveat: Eigenvalues determine only ultimate stability. U is typically nonnormal
so much solution growth is possible even when p(U) < 1.
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Chebyshev poly approx: 3 good reasons
B o

# polynomial and Fourier approximation (“spectral
approximation”) converges faster than finite diff or finite
elem or cubic splines or wavelets on analytic functions

# Though the coefficients in our DDE are periodic the
solutions are not. Thus Fourier not so good.
(Also: poly approx can be good on each piece of a
piecewise-analytic fcn without generating Gibbs
phenomena.)

# Chebyshev points are nearly optimal polynomial
interpolation points for minimizing uniform error



Chebyshev collocation points
=

Chebyshev poly approx can be implemented by collocation.
Cheb collocation (i.e. spectral differentiation) can be
Implemented by FFT.

For degree N, Cheb collocation points are

t; = cos(ym/N), j=0,...,N.
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Note t; € [—1,1]. If needed, shift and scale the collocation points to interval [0, 7].
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Spectral convergence of Cheb interpolation
B o

Theorem. If f is analytic on [—1,1] and if py Is the Nth

degree polynomial interpolant of f at the Cheb collocation
points then there is 0 < p < 1 and C > 0 so that

If — prlloo < CpN
forall N > 1.
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Cheb collocation approx of U
B o
§ = A(t)y + B(t)y—- with y(t) = 6(t),t € [, 0]

IS approximated by
Dyv = Myv + Mpw

where v =~ y, w ~ ¢ are numerical approximations,
v, w e CNHL

Dy Is the spectral differentiation matrix, and
M4, Mg are approximate multiplication operators.

Solving for v approximates U itself:

L U%UNE(DN—MA)_lMB
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Example: Eigsof ascalar DDE
-

For = —x 4 (1/2)xz_1 we compare:

=

“Exact” method: Each root i € C of characteristic egn
1= —1+0.5e"*Is eigenvalue of U. Reduce char egn to real
variable problem. Solve by robust one-variable method

(e.g. bisection) to 10~* relative accuracy.
VS

Cheb collocation with N = 29: Compute Uy. Find eigs of
Uy by OR iteration.
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Example, cont

0.025
xact eigs
® O approximate eig
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Re

RESULT: Over 100 digits of correct eigenvalues from
30 x 30 matrix approx of U.
Only eigs near 0 € C are inaccurate (irrelevant for stability).
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Cost of a stability chart
U

sing an m x m matrix approximation to U,
time to produce a chart = O((# of pixels) - m?)

with standard estimates on QR method for eigenvalues.

Thus m matters. For us, m = d(N + 1).
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a posteriori estimate for DDE IVPs
-

Theorem. Consider IVP y = A(t)y + B(t)y_., y(t) = ¢(t) for T
t € |—,0]. Find collocation solution p, a degree N polynomial.
Then there is C' which depend on a(t) butis O(1) in N so that

ly = plloo < C(I1n(Ap) — Ap|
+ |[In(B) — B |

+ [5(0) = A(0)¢(0) — B(0)¢(~)| )
where I (f) is interpolating polynomial of f.

Thus error has two sources: (i) interpolation errors; (ii)
residual error at initial time.

LRight-hand side decays exponentially in NV in practice. J
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a posteriori estimates of eigenvalues of U

-

Theorem. Let N > 1. Suppose coefficients A(t), B(t) are
analytic d x d matrix-valued functions.

Let 6 > 0. Suppose Uz = uzx for z € H', ||z|| = 1, and
1| > 5. Assume Uy = VAV ! with A diagonal. Let )\; be the
eigenvalues of Uy ; order by decreasing magnitude.

There are N positive quantities wy, which have a posteriori
estimates, and which decay exponentially with NV in practice,
so that
min g — ;| < min{wy,...,wyx}cond(V).

o
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Provable eigenvalues of U.

=

fExample: Consider & + & + (1 4 cos(nt))x = 0.5z(t — 2). Thisis a
damped Mathieu equation. Let N = 73 and compute Uy . Apply previous
theorem with 6 = 0.3.

Result: min [u — A;] <0.03019. In figure, dots are eigs of Uy ; discs are
proven error bounds for eigs bigger than é.
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LProposition (with a posteriori proof): If i is an eig of U and || > 0.3 then J
(1S In one of the discs.
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elgenvalue perturbation on Hilbert space:

-

In our case U ¢ L(H') has finite rank approximation Uy,
also acting on H'!. We diagonalize

Un = VAV_l,
and we compute the condition number of V.

Theorem. (Bauer-Fike for Hilbert spaces) If A, B € L(H), if
Bz = ux and A = VAV~ with A a multiplication operator on
L? and V an isomorphism of Hilbert spaces then

i A < [[VIIIIVIITHI(B = A)z]|.
Ag&)lu | < VIV~ IC )z |

LForus:A:UN,B:U. J
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elgenvalue perturbation and a posteriori estimates

fIn our case Uz, Uyx are exact and approximate solns to T
IVPs.

So ||(U — Uyn)z|| has an a posteriori estimate. In fact, w;. Iin

previous theorem are (proportional to) the values
|(U — Un)Ty|| where Ty, is the kth Chebyshev polynomial.

That Is, we prove that if one can solve the DDE accurately
with the first N Chebyshev polynomials as initial functions
then the numerical eigenvalues are accurate.
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Why peoplereally care about U
-

Interesting systems are nonlinear DDEs. (Linear, periodic T

DDEs are (usually) their linearizations about periodic
orbits.)

Questions about nonlinear DDE:
1. were are periodic orbits?
2. nature of bifurcations?

Assuming question 1 is solved, for question 2 we need
good bases for stable and unstable directions.

Good approximations to the monodromy operator of the
linearization therefore desirable for nonlinear analysis, too.
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