
PROGRAMMING LANGUAGES COMPARED

(FOR NUMERICAL AND APPLIED MATH COURSES)

ED BUELER

Matlab (“matrix laboratory”; see mathworks.com) was created in the late 1970s by Cleve Moler
for teaching numerical linear algebra without requiring FORTRAN programming. It has since
become a powerful programming language and engineering tool. A large fraction of upper-division
and graduate students at UAF are already familiar with it, and it is available through UAF. The
“Matlab student” version, at www.mathworks.com/academia/student version.html, works fine
for the numerical mathematics classes I teach. It works well, looks good, and I like it.

Matlab is recommended if you have no existing preference, but I prefer free and open source
software. Among the alternatives are three which work very well for numerical courses:

1. Octave is a Matlab clone. Download it at www.gnu.org/software/octave. The “.m”
examples on the next page, and thoughout this course, work in an identical way in Matlab
and in Octave. I will mostly use Octave myself during the course, but I’ll also make sure
examples work the same way in Matlab.

2. The general-purpose language Python (python.org) works very well if you learn to use the
numpy (numpy.org), scipy (scipy.org), and matplotlib (matplotlib.org) libraries.
Using the ipython interactive shell (ipython.org) gives the most Matlab-like experience.

3. The Julia language (julialang.org) is a modern redesign of Matlab, but it is not a
compatible clone like Octave. It easy to learn. Equivalent codes run much faster than in
Matlab or Octave.

On the next page are two algorithms in Matlab/Octave (left column) and Python (right col-
umn). Download these examples in a zip archive:

bueler.github.io/compareMOP.zip

Next are some brief “how-to” comments.

Program gaussint.m is a script. A script is run by starting Matlab/Octave, usually in the
directory containing the script you want to run. Then type the name of the script at the prompt,
without the .m:

>> gaussint

Typing help gaussint at the Matlab/Octave prompt shows the first block of comments.

bis.m is a function which needs inputs. At the prompt enter, for example,

>> f = @(x) cos(x) - x

>> bis(0,1,f)

Note we have given bis.m three arguments; the last is itself a function.

For the Python codes: You can do python gaussint.py directly from a shell. Alternatively,
from the Python or ipython prompt, type run gaussint. For the function bis.py, first do:
from bis import bis. Then run the example as shown in the docstring; in ipython you can
type bis? to print the docstring.

Julia examples bis.jl and gaussint.jl are also in the .zip, but usage is up to you.

Date: August 24, 2022.

http://www.mathworks.com/
https://www.mathworks.com/academia/student_version.html
http://www.gnu.org/software/octave/
http://python.org/
https://numpy.org/
http://www.scipy.org/
http://matplotlib.org/
http://ipython.org/
https://julialang.org/
http://bueler.github.io/compareMOP.zip

2 ED BUELER

gaussint.m

% plot the integrand and approximate
% the integral
% / 1
% | exp(-xˆ2/pi) dx
% / 0
% by left-hand, right-hand, and
% trapezoid rules

N = 1000;
dx = (1 - 0) / N;
x = linspace(0,1,N+1);
y = exp(- x.ˆ2 / pi);

plot(x,y)
axis([0 1 0 1]), grid

format long
lhand = dx * sum(y(1:end-1))
rhand = dx * sum(y(2:end))
trap = (dx/2) * sum(y(1:end-1)+y(2:end))
exact = (pi/2) * erf(1/sqrt(pi))

gaussint.py

’’’plot the integrand and approximate
the integral

/ 1
| exp(-xˆ2/pi) dx
/ 0

by left-hand, right-hand, and
trapezoid rules’’’

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf

N = 1000
dx = (1.0 - 0.0) / N
x = np.linspace(0.0,1.0,N+1)
y = np.exp(- x**2 / np.pi)

plt.plot(x,y)
plt.axis([0.0,1.0,0.0,1.0])
plt.grid(True)

lhand = dx * sum(y[:-1])
print("lhand = %.15f" % lhand)
rhand = dx * sum(y[1:])
print("rhand = %.15f" % rhand)
trap = (dx/2) * sum(y[:-1]+y[1:])
print("trap = %.15f" % trap)
exact = (np.pi/2) * erf(1/np.sqrt(np.pi))
print("exact = %.15f" % exact)
plt.show()

bis.m
function c = bis(a,b,f)
% BIS Apply the bisection method to solve
% f(x) = 0
% with initial bracket [a,b]. Example:
% >> f = @(x) cos(x) - x % define fcn
% >> r = bis(0,1,f) % find root
% >> f(r) % confirm

if (feval(f,a)) * (feval(f,b)) > 0
error(’not a bracket!’), end

for k = 1:100
c = (a+b)/2;
r = feval(f,c);
if abs(r) < 1e-12

return % we are done
elseif feval(f,a) * r >= 0.0

a = c;
else

b = c;
end

end
error(’no convergence’)

bis.py

def bis(a,b,f):
’’’BIS Apply the bisection method to solve

f(x) = 0
with initial bracket [a,b]. Example:

from bis import bis
def f(x):

from math import cos
return cos(x) - x

r = bis(0.0,1.0,f)
print([r,f(r)])’’’

if f(a) * f(b) > 0.0:
print("not a bracket!")
return

for k in range(100):
c = (a + b)/2
r = f(c)
if abs(r) < 1e-12:

return c # we are done
elif f(a) * r >= 0.0:

a = c
else:

b = c
print("no convergence")
return

