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Review of Turing (1948)

Full citation: A. M. Turing (1948). “Rounding-off errors in matrix processes,” The Quarterly
Journal of Mechanics and Applied Mathematics, 1 (1), 287–308.

My summary1: Turing starts numerical linear algebra from the beginning. His major concern is
the disaster-predicting claim from Hotelling (1943) that “in solving a set of n equations we should
keep 0.6n extra” decimal digits. (So 600 digit arithmetic is needed to solve 1000 linear equations!)

He tries to establish that such exponential growth of error does not generally occur when solving
systems of equations. He introduces the condition number of a matrix for this. He attempts a
forward error analysis of Gauss elimination with partial pivoting, giving a (not proven) estimate
that the error is polynomial in m, instead of exponential. He does not use (i.e. discover) the
backwards-error/stability analysis of Wilkinson (1961). He provides example matrix (22.4). His
last sentences on this topic predict the 1990s work on the errors in Gauss elimination.

At the same time, von Neumann and others thought one should use the normal equations and
Cholesky (Alg 23.1). Turing explains why not: it makes the problem more ill-conditioned.

Relation to topics in Trefethen & Bau: Turing lays out almost all of Lecture 20 from the mod-
ern point of view, including “Jn−1 . . . J1A = DU” as his version of equation (20.1). His first theorem
is the solution to exercise 20.1: if the principal minors of A are nonsingular then there is a unique
LU factorization. For both Alg 20.1 and the partial pivoting version (Alg 21.1), he gives a modern
matrix-factorization view. He writes the sequence A = LU , Ly = b, Ux = y for how to use LU to
solve systems.

He defines the “N -condition number” (compare Lecture 12) of A as n−1‖A‖F‖A−1‖F . He has part
of the idea of Theorem 12.2, but non-deterministic (and not proven). Specifically, he asserts that

solving systems with random matrices makes errors δx such that ‖δx‖2‖x‖2 = n−1‖A‖F‖A−1‖F ‖δA‖F‖A‖F
.

Also: He hints at the QR decomposition (Lecture 7) as “an upper triangular matrix M such that
M∗A∗AM = I, that is, so that AM is orthogonal,” but neither Gram-Schmidt or Householder is
suggested. He defines the following matrix norms (Lecture 3): ‖A‖F , ‖A‖2, and the ∞-norm of A
treated as a vector; I think he knows ‖A‖2 is more fundamental but he does not use it after defining
it. He introduces the term “preconditioning” (Lecture 40) for the first time, noting—this is 21st
century stuff!—that it requires “considerable liaison between the experimenter and the computer,”
now called “physics-based preconditioning”.

Most insightful/interesting/curious ideas: His way of counting operations includes “recordings of

numbers, and extractions of figures from tables.” He asserts (wrongly) that “with the advent of
electronic computers it will become standard practice” to compute A−1 to solve Ax = b, but then
he knows this is at extra (three-times) cost. He describes LU as “A = LDU” factorization, where
both L and U have unit diagonal and D is diagonal, but then groups DU as we do modernly. He
states that determinant is not a good measure of conditioning, giving four 3× 3 matrices with very
different condition numbers and the same determinant. He conjectures that random matrices have
N -condition number of m1/2—proven much later—thus that “random matrices are only slightly
ill-conditioned”.

1Not considered here: He also analyses “Morris’s escalator method”—never heard of it!—and Gauss-Jordan.


