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steepest descent for unconstrained optimization

@ for the day | am away, here is a distraction from linear programming
@ these slides are a brief introduction to a well-known topic in
unconstrained optimization, namely ...
@ steepest descent
o a.k.a. gradient descent
@ the textbook’ puts it off till later but you should be aware of it now
o please read sections 12.1 and 12.2, but ignore the Lemmas for now

"Griva, Nash & Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009
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why you should know about steepest descent

@ if you deal with optimization in the real world you will see it as a proposed

algorithm for stuff
@ for easy problems it is the lazy-person’s algorithm
o “easy” roughly means:
@ smooth
@ dimension < 108 (or so)
@ unconstrained
o | don’t recommend steepest descent
o ...but it might minimize total programmer time
@ for hard problems it may be the only thing you can implement

o e.g. big machine learning problems, big nonlinear inverse problems, ...

o a version of steepest descent may be the standard in your industry
o e.g. stochastic gradient descent is a nice, popular buzzword

@ it's even slower than ordinary steepest descent
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the steepest descent algorithm

@ assume f: R"” — R has (at least) one continuous derivative
@ we want to solve the unconstrained problem:

inf(x
min f(x)
@ the algorithm:
1. User supplies xo.
2. Fork=0,1,2,...
(i) If xx is optimal then stop.
(i) Search direction is
px = —V(xk)

(iii) Determine step length ax > 0. Let Xk11 = Xk + okPk-
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steepest descent is obvious

@ it is an obvious interpretation of general optimization algorithm Il in §2.4

o direction is chosen as “go straight downhill”
@ recall from calculus: the gradient points straight uphill
o but we don’t know how to use the length of V£(xx)
o ...S0 we must make a choice for o
o also we need a stopping criterion

@ any choice of steepest descent length, i.e. px = —cVf(xx) and ¢ > 0,
generates a (feasible) descent direction at xx

o recall: pis a descent direction at x if p" Vf(x) < 0

@ choosing px = —V{(xx) uses the direction which solves this
directional-derivative optimization problem

min q' VF(xk)
llall=1
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one way to choose step length: back-tracking

@ we will see in section 11.5 that we can prove convergence of many
unconstrained optimization algorithms as long as the step-size o is
chosen to satisfy certain conditions

@ for now | just need some reasonable way to choose ay

@ the standard way to satisfy these conditions is called “back-tracking”

o page 378 of the textbook
o an implementation:

function alpha = bt (xk,pk,dfxk, f)

Dk = dfxk’ = pk; % scalar directional derivative; negative
c = 1.0e-4; % modest sufficient decrease
rho = 0.5; % backtracking by halving

alpha = 1.0;

while f(xk + alpha * pk) > f(xk) + c % alpha * Dk
alpha = rho x alpha;

end

o we will return to this topic
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steepest-descent-back-tracking code

@ here is a basic implementation of steepest-descent-with-back-tracking

= SDBT

@ it assumes that the user supplies xo and a function f that returns both the

values f(x) and the gradient Vf(x):

xk = x0;
for k = l:maxiters
[fxk, dfxk] = f(xk);
if norm(dfxk) < tol
break
end
pk = - dfxk;

alpha = bt (xk,pk,dfxk, f);
xk = xk + alpha =* pk;
end

@ you can set maxiters to 10* or so to avoid long waits for failure
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steepest-descent-back-tracking: example |

@ suppose f(x) = 5x2 + }x2 for x € R?, an easy quadratic objective
function with global minimum at x* = (0,0) "

@ result from SDBT:

=T

-10

-20

@ is this result 0.k.?
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steepest-descent-back-tracking: example Il

@ a famously-harder problem in R? is to minimize the Rosenbrock function:
f(x) =100(x2 — x2)? + (1 — xy)?

o is a quartic polynomial in 2 variables

o has a single global minimum at x* = (1,1)"

o has steep “banana” shaped contours (bottom left)
@ at right: SDBT from xo = (0,0)" |

o struggles
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quadratic functions

@ now we consider steepest descent for quadratic functions in R”
@ such functions can always be written

f(x) = %xTox —c'x+d

o Qis a symmetric square matrix, c is a column vector, d € R
o exercise P9 on A5: check that

Vix)=Qx—c

o assume Q is positive definite
@ then f is strictly convex
@ and there is unique global (and local) minimizer where Vf = 0: x*=Q ¢
o the additive constant d can be ignored in optimization problems because it
neither affects Vf(x) nor the location of x*
o example 1: ¢ = 0; Q is a diagonal 2 x 2 matrix with 5,1/2 on diagonal
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line search for quadratic functions

@ given any descent direction py at x, the optimal step size is

_ =P Vi(Xk) _ pg(c— Qxk)
Ok = 7T = T
Py Qo Px Qpk

o showing this is in exercise P9 on A5
@ this ax minimizes g(«a) = f(xx + apx) over a > 0
@ thus back-tracking is not needed for quadratic functions

@ but steepest descent is still slow

o exercise P10 on A5 asks you to reproduce Example 12.1 in section 12.2 of

the textbook

o steepest descent with optimal step size uses a totally-unnecessary 216

steps to get modest accuracy

o since we have the optimal step size ay, the problem in steepest descent

must be that the steepest descent direction is wrong
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steepest descent is the wrong direction

e for quadratic objective functions f(x) = 2x" Qx — ¢ ' x, where the gradient
is a linear function, the Newton iteration converges to x* = Q"¢ in one
step

@ Newton uses this direction:
—1
Pk =— (Vf(xk)T) V(xk)
@ steepest descent uses:
ok = —Vixk) = —(1) 7'V F(xk)

@ unconstrained optimization usually benefits a lot from using the

information in the Hessian to turn away from the steepest descent

direction —Vf(xk)

o that's why we will care about the rest of Chapters 11, 12, and 13
o especially “quasi-Newton” methods
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summary slide

@ steepest descent simply uses search direction px = —Vf(x)
@ determining the step size ak is nontrivial

o line search (section 11.5) or trust region (11.6) is needed
o for general functions, back-tracking is recommended
o for quadratic functions we can use the optimal step size

@ even with good line search, steepest descent sucks

o steepest descent is slow when contour lines (level sets) are highly curved
o going down the gradient is generally the wrong direction

@ for quadratic functions Newton is clearly better: one step convergence
@ hard functions like Rosenbrock are hard even for Newton
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