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steepest descent for unconstrained optimization

for the day I am away, here is a distraction from linear programming
these slides are a brief introduction to a well-known topic in
unconstrained optimization, namely . . .
steepest descent
◦ a.k.a. gradient descent

the textbook1 puts it off till later but you should be aware of it now
◦ please read sections 12.1 and 12.2, but ignore the Lemmas for now

1Griva, Nash & Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009
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why you should know about steepest descent

if you deal with optimization in the real world you will see it as a proposed
algorithm for stuff
for easy problems it is the lazy-person’s algorithm
◦ “easy” roughly means:

smooth
dimension < 106 (or so)
unconstrained

◦ I don’t recommend steepest descent
◦ . . . but it might minimize total programmer time

for hard problems it may be the only thing you can implement
◦ e.g. big machine learning problems, big nonlinear inverse problems, . . .
◦ a version of steepest descent may be the standard in your industry
◦ e.g. stochastic gradient descent is a nice, popular buzzword

it’s even slower than ordinary steepest descent
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the steepest descent algorithm

assume f : Rn → R has (at least) one continuous derivative
we want to solve the unconstrained problem:

min
Rn

f (x)

the algorithm:

1. User supplies x0.
2. For k = 0, 1, 2, . . .

(i) If xk is optimal then stop.
(ii) Search direction is

pk = −∇f (xk )

(iii) Determine step length αk > 0. Let xk+1 = xk + αk pk .
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steepest descent is obvious

it is an obvious interpretation of general optimization algorithm II in §2.4
◦ direction is chosen as “go straight downhill”

recall from calculus: the gradient points straight uphill

◦ but we don’t know how to use the length of ∇f (xk )
◦ . . . so we must make a choice for αk

◦ also we need a stopping criterion

any choice of steepest descent length, i.e. pk = −c∇f (xk ) and c > 0,
generates a (feasible) descent direction at xk

◦ recall: p is a descent direction at x if p>∇f (x) < 0

choosing pk = −∇f (xk ) uses the direction which solves this
directional-derivative optimization problem

min
‖q‖=1

q>∇f (xk )
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one way to choose step length: back-tracking

we will see in section 11.5 that we can prove convergence of many
unconstrained optimization algorithms as long as the step-size αk is
chosen to satisfy certain conditions
for now I just need some reasonable way to choose αk

the standard way to satisfy these conditions is called “back-tracking”
◦ page 378 of the textbook
◦ an implementation:

function alpha = bt(xk,pk,dfxk,f)
Dk = dfxk’ * pk; % scalar directional derivative; negative
c = 1.0e-4; % modest sufficient decrease
rho = 0.5; % backtracking by halving
alpha = 1.0;
while f(xk + alpha * pk) > f(xk) + c * alpha * Dk

alpha = rho * alpha;
end

◦ we will return to this topic
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steepest-descent-back-tracking code

here is a basic implementation of steepest-descent-with-back-tracking
= SDBT

it assumes that the user supplies x0 and a function f that returns both the
values f (x) and the gradient ∇f (x):

xk = x0;
for k = 1:maxiters

[fxk, dfxk] = f(xk);
if norm(dfxk) < tol

break
end
pk = - dfxk; % steepest descent
alpha = bt(xk,pk,dfxk,f); % back-tracking
xk = xk + alpha * pk;

end

you can set maxiters to 104 or so to avoid long waits for failure
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steepest-descent-back-tracking: example I

suppose f (x) = 5x2
1 + 1

2 x2
2 for x ∈ R2, an easy quadratic objective

function with global minimum at x∗ = (0,0)>

result from SDBT:

is this result o.k.?
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steepest-descent-back-tracking: example II

a famously-harder problem in R2 is to minimize the Rosenbrock function:

f (x) = 100(x2 − x2
1 )

2 + (1− x1)
2

◦ is a quartic polynomial in 2 variables
◦ has a single global minimum at x∗ = (1, 1)>

◦ has steep “banana” shaped contours (bottom left)

at right: SDBT from x0 = (0,0)>

◦ struggles
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quadratic functions

now we consider steepest descent for quadratic functions in Rn

such functions can always be written

f (x) =
1
2

x>Q x − c>x + d

◦ Q is a symmetric square matrix, c is a column vector, d ∈ R
◦ exercise P9 on A5: check that

∇f (x) = Q x − c

◦ assume Q is positive definite
then f is strictly convex
and there is unique global (and local) minimizer where ∇f = 0: x∗ = Q−1c

◦ the additive constant d can be ignored in optimization problems because it
neither affects ∇f (x) nor the location of x∗

◦ example 1: c = 0; Q is a diagonal 2× 2 matrix with 5,1/2 on diagonal
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line search for quadratic functions

given any descent direction pk at xk , the optimal step size is

αk =
−p>k ∇f (xk )

p>k Qpk
=

p>k (c −Qxk )

p>k Qpk

◦ showing this is in exercise P9 on A5

this αk minimizes g(α) = f (xk + αpk ) over α > 0
thus back-tracking is not needed for quadratic functions

but steepest descent is still slow
◦ exercise P10 on A5 asks you to reproduce Example 12.1 in section 12.2 of

the textbook
◦ steepest descent with optimal step size uses a totally-unnecessary 216

steps to get modest accuracy
◦ since we have the optimal step size αk , the problem in steepest descent

must be that the steepest descent direction is wrong
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steepest descent is the wrong direction

for quadratic objective functions f (x) = 1
2 x>Qx − c>x , where the gradient

is a linear function, the Newton iteration converges to x∗ = Q−1c in one
step
Newton uses this direction:

pk = −
(
∇f (xk )

>)−1∇f (xk )

steepest descent uses:

pk = −∇f (xk ) = −(I)−1∇f (xk )

unconstrained optimization usually benefits a lot from using the
information in the Hessian to turn away from the steepest descent
direction −∇f (xk )

◦ that’s why we will care about the rest of Chapters 11, 12, and 13
◦ especially “quasi-Newton” methods
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summary slide

steepest descent simply uses search direction pk = −∇f (xk )

determining the step size αk is nontrivial
◦ line search (section 11.5) or trust region (11.6) is needed
◦ for general functions, back-tracking is recommended
◦ for quadratic functions we can use the optimal step size

even with good line search, steepest descent sucks
◦ steepest descent is slow when contour lines (level sets) are highly curved
◦ going down the gradient is generally the wrong direction

for quadratic functions Newton is clearly better: one step convergence
hard functions like Rosenbrock are hard even for Newton

Ed Bueler (MATH 661) Steepest descent Fall 2018 13 / 13


