Steepest descent

is not great

Ed Bueler

MATH 661 Optimization

1 October 2018

1/13

steepest descent for unconstrained optimization

- for the day I am away, here is a distraction from linear programming
- these slides are a brief introduction to a well-known topic in unconstrained optimization, namely . . .
- steepest descent
 - o a.k.a. gradient descent
- the textbook¹ puts it off till later but you should be aware of it now
 - please read sections 12.1 and 12.2, but ignore the Lemmas for now

¹Griva, Nash & Sofer, *Linear and Nonlinear Optimization*, 2nd ed., SIAM Press 2009

2/13

why you should know about steepest descent

- if you deal with optimization in the real world you will see it as a proposed algorithm for stuff
- for easy problems it is the lazy-person's algorithm
 - o "easy" roughly means:
 - smooth
 - dimension < 10⁶ (or so)
 - unconstrained
 - I don't recommend steepest descent
 - o ... but it might minimize total programmer time
- for hard problems it may be the only thing you can implement
 - o e.g. big machine learning problems, big nonlinear inverse problems, ...
 - o a version of steepest descent may be the standard in your industry
 - o e.g. stochastic gradient descent is a nice, popular buzzword
 - it's even slower than ordinary steepest descent

the steepest descent algorithm

- assume $f: \mathbb{R}^n \to \mathbb{R}$ has (at least) one continuous derivative
- we want to solve the unconstrained problem:

$$\min_{\mathbb{R}^n} f(x)$$

- the algorithm:
 - 1. User supplies x_0 .
 - 2. For k = 0, 1, 2, ...
 - (i) If x_k is optimal then stop.
 - (ii) Search direction is

$$p_k = -\nabla f(x_k)$$

(iii) Determine step length $\alpha_k > 0$. Let $x_{k+1} = x_k + \alpha_k p_k$.

steepest descent is obvious

- it is an obvious interpretation of general optimization algorithm II in §2.4
 - direction is chosen as "go straight downhill"
 - · recall from calculus: the gradient points straight uphill
 - but we don't know how to use the length of $\nabla f(x_k)$
 - \circ ... so we *must* make a choice for α_k
 - o also we need a stopping criterion
- any choice of steepest descent length, i.e. $p_k = -c\nabla f(x_k)$ and c > 0, generates a (feasible) descent direction at x_k
 - o recall: p is a descent direction at x if $p^{\top}\nabla f(x) < 0$
- choosing $p_k = -\nabla f(x_k)$ uses the direction which solves this directional-derivative optimization problem

$$\min_{\|q\|=1} q^{\top} \nabla f(x_k)$$

5/13

Fall 2018

one way to choose step length: back-tracking

- we will see in section 11.5 that we can prove convergence of many unconstrained optimization algorithms as long as the step-size α_k is chosen to satisfy certain conditions
- for now I just need *some* reasonable way to choose α_k
- the standard way to satisfy these conditions is called "back-tracking"
 - o page 378 of the textbook
 - o an implementation:

```
function alpha = bt(xk,pk,dfxk,f) 
Dk = dfxk' * pk; % scalar directional derivative; negative 
c = 1.0e-4; % modest sufficient decrease 
rho = 0.5; % backtracking by halving 
alpha = 1.0; while f(xk + alpha * pk) > f(xk) + c * alpha * Dk 
<math>alpha = rho * alpha; end
```

we will return to this topic

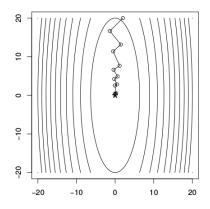
steepest-descent-back-tracking code

- here is a basic implementation of steepest-descent-with-back-tracking
 SDBT
- it assumes that the user supplies x_0 and a function f that returns both the values f(x) and the gradient $\nabla f(x)$:

you can set maxiters to 10⁴ or so to avoid long waits for failure

steepest-descent-back-tracking: example I

- suppose $f(x) = 5x_1^2 + \frac{1}{2}x_2^2$ for $x \in \mathbb{R}^2$, an easy quadratic objective function with global minimum at $x^* = (0,0)^{\top}$
- result from SDBT:



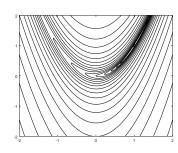
is this result o.k.?

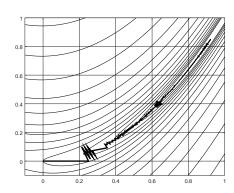
steepest-descent-back-tracking: example II

• a famously-harder problem in \mathbb{R}^2 is to minimize the *Rosenbrock function*:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- o is a *quartic* polynomial in 2 variables
- has a single global minimum at $x^* = (1, 1)^{\top}$
- has steep "banana" shaped contours (bottom left)
- at right: SDBT from $x_0 = (0,0)^{\top}$
 - o struggles





9/13

Ed Bueler (MATH 661) Steepest descent Fall 2018

quadratic functions

- now we consider steepest descent for quadratic functions in \mathbb{R}^n
- such functions can always be written

$$f(x) = \frac{1}{2}x^{\top}Qx - c^{\top}x + d$$

- Q is a symmetric square matrix, c is a column vector, $d \in \mathbb{R}$
- exercise P9 on A5: check that

$$\nabla f(x) = Qx - c$$

- o assume Q is positive definite
 - then f is strictly convex
 - and there is unique global (and local) minimizer where $\nabla f = 0$: $x^* = Q^{-1}c$
- the additive constant d can be ignored in optimization problems because it neither affects $\nabla f(x)$ nor the location of x^*
- o example 1: c = 0; Q is a diagonal 2×2 matrix with 5,1/2 on diagonal

line search for quadratic functions

• given any descent direction p_k at x_k , the *optimal* step size is

$$\alpha_k = \frac{-\rho_k^\top \nabla f(x_k)}{\rho_k^\top Q \rho_k} = \frac{\rho_k^\top (c - Q x_k)}{\rho_k^\top Q \rho_k}$$

- o showing this is in exercise P9 on A5
- this α_k minimizes $g(\alpha) = f(x_k + \alpha p_k)$ over $\alpha > 0$
- thus back-tracking is not needed for quadratic functions
- but steepest descent is still slow
 - exercise P10 on A5 asks you to reproduce Example 12.1 in section 12.2 of the textbook
 - steepest descent with optimal step size uses a totally-unnecessary 216 steps to get modest accuracy
 - o since we have the optimal step size α_k , the problem in steepest descent must be that the steepest descent direction is wrong

steepest descent is the wrong direction

- for quadratic objective functions $f(x) = \frac{1}{2}x^{\top}Qx c^{\top}x$, where the gradient is a linear function, the Newton iteration converges to $x^* = Q^{-1}c$ in one step
- Newton uses this direction:

$$p_k = -\left(\nabla f(x_k)^{\top}\right)^{-1} \nabla f(x_k)$$

steepest descent uses:

$$p_k = -\nabla f(x_k) = -(I)^{-1} \nabla f(x_k)$$

- unconstrained optimization usually benefits a lot from using the information in the Hessian to turn away from the steepest descent direction $-\nabla f(x_k)$
 - that's why we will care about the rest of Chapters 11, 12, and 13
 - especially "quasi-Newton" methods

summary slide

- steepest descent simply uses search direction $p_k = -\nabla f(x_k)$
- determining the step size α_k is nontrivial
 - line search (section 11.5) or trust region (11.6) is needed
 - o for general functions, back-tracking is recommended
 - o for quadratic functions we can use the optimal step size
- even with good line search, steepest descent sucks
 - steepest descent is slow when contour lines (level sets) are highly curved
 - going down the gradient is generally the wrong direction
- for quadratic functions Newton is clearly better: one step convergence
- hard functions like Rosenbrock are hard even for Newton

13/13