Steepest descent
is not great

Ed Bueler

MATH 661 Optimization

1 October 2018

Ed Bueler (MATH 661) Steepest descent Fall 2018 1/13



steepest descent for unconstrained optimization

@ for the day | am away, here is a distraction from linear programming
@ these slides are a brief introduction to a well-known topic in
unconstrained optimization, namely ...
@ steepest descent
o a.k.a. gradient descent
@ the textbook’ puts it off till later but you should be aware of it now
o please read sections 12.1 and 12.2, but ignore the Lemmas for now

"Griva, Nash & Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009

Ed Bueler (MATH 661) Steepest descent Fall 2018 2/13



why you should know about steepest descent

@ if you deal with optimization in the real world you will see it as a proposed

algorithm for stuff
@ for easy problems it is the lazy-person’s algorithm
o “easy” roughly means:
@ smooth
@ dimension < 108 (or so)
@ unconstrained
o | don’t recommend steepest descent
o ...but it might minimize total programmer time
@ for hard problems it may be the only thing you can implement

o e.g. big machine learning problems, big nonlinear inverse problems, ...

o a version of steepest descent may be the standard in your industry
o e.g. stochastic gradient descent is a nice, popular buzzword

@ it's even slower than ordinary steepest descent

Ed Bueler (MATH 661) Steepest descent Fall 2018

3/13



the steepest descent algorithm

@ assume f: R"” — R has (at least) one continuous derivative
@ we want to solve the unconstrained problem:

inf(x
min f(x)
@ the algorithm:
1. User supplies xo.
2. Fork=0,1,2,...
(i) If xx is optimal then stop.
(i) Search direction is
px = —V(xk)

(iii) Determine step length ax > 0. Let Xk11 = Xk + okPk-

Ed Bueler (MATH 661) Steepest descent Fall 2018

4/13



steepest descent is obvious

@ it is an obvious interpretation of general optimization algorithm Il in §2.4

o direction is chosen as “go straight downhill”
@ recall from calculus: the gradient points straight uphill
o but we don’t know how to use the length of V£(xx)
o ...S0 we must make a choice for o
o also we need a stopping criterion

@ any choice of steepest descent length, i.e. px = —cVf(xx) and ¢ > 0,
generates a (feasible) descent direction at xx

o recall: pis a descent direction at x if p" Vf(x) < 0

@ choosing px = —V{(xx) uses the direction which solves this
directional-derivative optimization problem

min q' VF(xk)
llall=1

Ed Bueler (MATH 661) Steepest descent Fall 2018

5/13



one way to choose step length: back-tracking

@ we will see in section 11.5 that we can prove convergence of many
unconstrained optimization algorithms as long as the step-size o is
chosen to satisfy certain conditions

@ for now | just need some reasonable way to choose ay

@ the standard way to satisfy these conditions is called “back-tracking”

o page 378 of the textbook
o an implementation:

function alpha = bt (xk,pk,dfxk, f)

Dk = dfxk’ = pk; % scalar directional derivative; negative
c = 1.0e-4; % modest sufficient decrease
rho = 0.5; % backtracking by halving

alpha = 1.0;

while f(xk + alpha * pk) > f(xk) + c % alpha * Dk
alpha = rho x alpha;

end

o we will return to this topic

Ed Bueler (MATH 661) Steepest descent Fall 2018 6/13



steepest-descent-back-tracking code

@ here is a basic implementation of steepest-descent-with-back-tracking

= SDBT

@ it assumes that the user supplies xo and a function f that returns both the

values f(x) and the gradient Vf(x):

xk = x0;
for k = l:maxiters
[fxk, dfxk] = f(xk);
if norm(dfxk) < tol
break
end
pk = - dfxk;

alpha = bt (xk,pk,dfxk, f);
xk = xk + alpha =* pk;
end

@ you can set maxiters to 10* or so to avoid long waits for failure

Ed Bueler (MATH 661) Steepest descent

o°

steepest descent
% back-tracking

Fall 2018

7/13



steepest-descent-back-tracking: example |

@ suppose f(x) = 5x2 + }x2 for x € R?, an easy quadratic objective
function with global minimum at x* = (0,0) "

@ result from SDBT:

=T

-10

-20

@ is this result 0.k.?

Ed Bueler (MATH 661) Steepest descent Fall 2018 8/13



steepest-descent-back-tracking: example Il

@ a famously-harder problem in R? is to minimize the Rosenbrock function:
f(x) =100(x2 — x2)? + (1 — xy)?

o is a quartic polynomial in 2 variables

o has a single global minimum at x* = (1,1)"

o has steep “banana” shaped contours (bottom left)
@ at right: SDBT from xo = (0,0)" |

o struggles

I

0.8

0.6

0.4

0.2 ——

Ed Bueler (MATH 661) Steepest descent Fall 2018 9/13



quadratic functions

@ now we consider steepest descent for quadratic functions in R”
@ such functions can always be written

f(x) = %xTox —c'x+d

o Qis a symmetric square matrix, c is a column vector, d € R
o exercise P9 on A5: check that

Vix)=Qx—c

o assume Q is positive definite
@ then f is strictly convex
@ and there is unique global (and local) minimizer where Vf = 0: x*=Q ¢
o the additive constant d can be ignored in optimization problems because it
neither affects Vf(x) nor the location of x*
o example 1: ¢ = 0; Q is a diagonal 2 x 2 matrix with 5,1/2 on diagonal

Ed Bueler (MATH 661) Steepest descent Fall 2018 10/13



line search for quadratic functions

@ given any descent direction py at x, the optimal step size is

_ =P Vi(Xk) _ pg(c— Qxk)
Ok = 7T = T
Py Qo Px Qpk

o showing this is in exercise P9 on A5
@ this ax minimizes g(«a) = f(xx + apx) over a > 0
@ thus back-tracking is not needed for quadratic functions

@ but steepest descent is still slow

o exercise P10 on A5 asks you to reproduce Example 12.1 in section 12.2 of

the textbook

o steepest descent with optimal step size uses a totally-unnecessary 216

steps to get modest accuracy

o since we have the optimal step size ay, the problem in steepest descent

must be that the steepest descent direction is wrong

Ed Bueler (MATH 661) Steepest descent

Fall 2018

11/13



steepest descent is the wrong direction

e for quadratic objective functions f(x) = 2x" Qx — ¢ ' x, where the gradient
is a linear function, the Newton iteration converges to x* = Q"¢ in one
step

@ Newton uses this direction:
—1
Pk =— (Vf(xk)T) V(xk)
@ steepest descent uses:
ok = —Vixk) = —(1) 7'V F(xk)

@ unconstrained optimization usually benefits a lot from using the

information in the Hessian to turn away from the steepest descent

direction —Vf(xk)

o that's why we will care about the rest of Chapters 11, 12, and 13
o especially “quasi-Newton” methods

Ed Bueler (MATH 661) Steepest descent Fall 2018 12/13



summary slide

@ steepest descent simply uses search direction px = —Vf(x)
@ determining the step size ak is nontrivial

o line search (section 11.5) or trust region (11.6) is needed
o for general functions, back-tracking is recommended
o for quadratic functions we can use the optimal step size

@ even with good line search, steepest descent sucks

o steepest descent is slow when contour lines (level sets) are highly curved
o going down the gradient is generally the wrong direction

@ for quadratic functions Newton is clearly better: one step convergence
@ hard functions like Rosenbrock are hard even for Newton

Ed Bueler (MATH 661) Steepest descent Fall 2018 13/13



