
Math 661 Optimization (Bueler) October 29, 2018

About your project

Goal. The goal of the Math 661 project is for you to become more familiar with cer-
tain optimization problems and algorithms than is possible with the brief coverage
that is typical of the rest of the course.

Expectations. Your project may be application-driven (choose the problem(s) first) or
algorithm-driven (choose the algorithm(s) first)—see page 3—but all projects must in-
clude a specific optimization problem and a specific optimization algorithm. That
is, you will implement at least one algorithm, i.e. in MATLAB/PYTHON/ JULIA/etc.,
and apply your code to at least one example problem.

Both numerical computation and mathematical analysis are required. For the
latter you will analyze the problem(s) and algorithm(s) using theory from the text-
book1 and/or from other references. Once your code is running you should provide
some empirical (numerical experimentation) evidence regarding the error and/or
performance of your algorithm(s). Analysis is important because it shows you have
absorbed ideas from the course, and because it distinquishes between algorithms.
Numerical evidence is important because it confirms that you understood the algo-
rithm well enough to implement it correctly.

Your problem(s) must be in the following form:

(1) min
x∈Rn

f(x) subject to
gi(x) = 0, i ∈ E ,
gi(x) ≥ 0, i ∈ I,

though of course you may replace min with max. If your project is algorithm-driven
then you must identify which such problems are solved by your algorithms(s).

Form (1) describes a very large class of problems, but note your problem(s) must
be finite-dimensional (Rn), though it may arise from an infinite-dimensional source.
The problem(s) must be well-enough understood to allow you to both precisely
identify the objective function f(x) and precisely identify a feasible set S defined by
finitely-many constraints gi(x). It is o.k. if there are no constraints.

Due dates. There are two due dates for the project:

I = Proposal: Part I is due Friday 9 November at the start of class.2 There are no format
requirements for this part except that it can be at most two pages.

The proposal should precisely say what problem(s) or algorithm(s) you
want to look at. If application-driven it should explain briefly where the
optimization problem(s) came from, and in any case it should briefly mo-
tivate your proposed choice(s) of algorithm(s). Then the proposal should
talk though what the complete project will contain, to the degree possible.

1Griva, Nash, and Sofer, Linear and Nonlinear Optimization, 2nd ed., SIAM Press 2009.
2This is a change from the date on the syllabus.



2

Several quality references are expected; online references are o.k.3 Make
specific references to our textbook when that is appropriate.

Spending at least a few hours on thinking and research at this stage can
be very effective, but you should spend at most (say) 6 hours on this part. It
would be good to use a version control system already at this stage, if you
know how.

II = Project: On Tuesday 11 December at 5pm you will submit the complete project.
It should have the format and section headings as shown on page 4 below.

This format corresponds to a LATEX document template already posted online:
bueler.github.io/M661F18/blankproject.tex

Of course you do not have to use LATEX, but please do use the indicated sec-
tion headings.

The total length must be 20 pages or less; I will not accept longer projects.
The total time spent on the whole project should be at most 25 hours.

Choosing a topic. One of my jobs will be to help you choose problem(s) and algo-
rithm(s) so that your project has reasonable difficulty. I will likely advise you not
to bite off too much! The bigger the scope the easier it is to get lost in the appli-
cation, the algorithmic details, or in difficulties with codes or analysis. And your
proposal allows me to give good feedback on the topic, perhaps a gentle nudge in
the direction of a nice variation in topic, or a different analysis to consider, etc.

You may not choose a topic which has been, or will be, adequately covered in
the course. For example, though the basic simplex method is not a good topic.
However, implementations of the simplex method which respect sparsity, a topic
we do not cover, would be a great choice (Chapter 7). Similarly, the classical New-
ton method is not a good subject but investigating quasi-Newton methods beyond
BFGS, or line search methods beyond backtracking, or trust region methods, would
all be good choices (Chapters 11,12).

Here are three approaches to choosing a topic if you don’t already have one:

Approach 1: Inspiration from the Wikipedia page on mathematical optimization. See the
“Applications,” “Major subfields,” and “Computational . . . techniques” sections of

en.wikipedia.org/wiki/Mathematical optimization

Approach 2: Investigate skipped material from the textbook. Consider section(s) that you
find interesting and which we did not cover. However, don’t just choose a section
at random; the above Wikipedia page is better for starting from scratch.

Approach 3: A topic related to your thesis (if you have one). You can talk to me, but it
will take a while for me to understand the context of your problem. It would be
better to talk to your thesis advisor. It is reasonable to ask “are there optimization
problems related to my expected thesis”? Broadly-speaking these might relate to
optimal design or parameter fitting, or to algorithms which arise in your field of
interest. There may be a paper to read about optimization in your field. Don’t cover
territory comparable to your whole thesis; extract a little part and do it carefully.

3However, I find that many informal online documents are of low quality.

http://bueler.github.io/M661F18/index.html
https://en.wikipedia.org/wiki/Mathematical_optimization


3

Structure of the project. Here is a rough flow-chart. It aligns well with the section
headings on the next page.

is your
project

driven by?

introduce
algorithm(s)

algorithm

give pseudocode(s)

propose at least one
example problem for

testing

introduce
application(s)

application

describe at least one
example problem

describe at least one
algorithm; give
pseudocodes

implement algorithms
in MATLAB/. . .

demonstrate runs on
example(s); show

results

analysis:
• convergence: e.g. state theorems; compare rates
• performance: e.g. count operations; show timing

what you would do
next? conclude


	Goal
	Expectations
	Due dates
	Choosing a topic
	Structure of the project

