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Abstract

The algorithm documented here is a version of a Newton-type primal-dual interior point
algorithm in [5], namely Algorithm 16.1 in section 16.7. The version here minimizes a smooth
nonlinear function subject to the simple constraints that all the variables are nonnegative.
That is, it is a specialized algorithm for nonnegativity constraints; it is not suitable for general
inequality constraints.

These short notes are not research as this algorithm is simply a special case of a well-
known algorithm. Furthermore “POPDIP” is just a name I made up; it is not in common use!
However, this class of algorithms is new to me so I am documenting it fully.

Introduction

Consider a nonlinear optimization problem with nonnegativity (informally: positivity) con-
straints on the variables:

minimize f(x)

subject to x ≥ 0
(1)

As usual, “x ≥ 0” means that each entry of x ∈ Rn is nonnegative. The feasible set for (1) is the
convex and closed set S = {x ∈ Rn : x ≥ 0}with interior S◦ = {x ∈ Rn : x > 0}.

Here f : Rn → Rn is a continuous and smooth function. In fact this algorithm only assumes
f is defined and smooth on S◦, but in practice, so as to have a chance of good performance, f
should be well-behaved near the boundary of S.

One can start the derivation by considering a logarithmic barrier function. Let µ > 0. If
x ∈ S◦ then the following function is well-defined and finite:

βµ(x) = f(x)− µ
n∑
i=1

lnxi (2)

Let {e1, . . . , en} be the standard basis of Rn. The first-order necessary condition for the uncon-
strained problem of minimizing βµ, namely∇βµ(x) = 0 for x ∈ S◦, is

∇f(x)− µ
n∑
i=1

1

xi
ei = 0 (3)



Conditions (3) can be reformulated by defining additional variables

λi =
µ

xi

so that λ ∈ Rn. Note that λ > 0 if and only if x > 0 because λixi = µ > 0. Then (3), plus feasibility
for x, is precisely equivalent to the following nonlinear system of equations and inequalities:

x ≥ 0 (4)

λ ≥ 0

∇f(x)− λ = 0

λixi = µ, i = 1, . . . , n

The feasible set for x and for λ is the same, namely S ⊂ Rn. Because of the last condition in
(4), both x and λ are positive and thus in the interior S◦. By contrast, for the general primal-dual
interior point Algorithm 16.1 [5, section 16.7], the feasible set for the primal variable x is different
from the dual feasible set for λ. For example, generally the dimension is different.

The third condition in (4) can be written using a Lagrangian function for (1), namely

L(x, λ) = f(x)−
n∑
i=1

λixi, (5)

in which case the third condition states that ∇xL(x, λ) = 0. In fact, the KKT conditions [5,
sections 14.4, 14.5] are nearly the same as (4) but with the last equation replaced by a condition
of complementary slackness,

x ≥ 0 (6)

λ ≥ 0

∇f(x)− λ = 0

λixi = 0, i = 1, . . . , n

System (4) modifies these KKT conditions by changing complementary slackness to a connection
between the primal and dual variables. Their product is set to a positive constant. Thus system
(4) describes a solution which is different from the KKT conditions for (1).

The stationary-point conditions for Lagrangian (5) which would apply in the absence of pos-
itivity constraints, namely ∇xL(x, λ) = 0 and ∇λL(x, λ) = 0, do not generally apply, of course.
(Making the inequality constraints into equalities would make the problem trivial!) However,
xi = 0 holds by definition when the ith constraint is active. The algorithm here will not keep
track of the active set but rather allow determination of the active set upon convergence, by use
of a near-zero tolerance.

One of the KKT conditions (6) is ∇f(x) − λ = 0 so λ can be easily eliminated if desired. In
fact, writing the conditions without the dual variables gives a nonlinear complementary problem
(NCP) [3],

x ≥ 0, F (x) ≥ 0, xiF (x)i = 0
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where F (x) = ∇f(x) is a vector-valued function. Thus we can regard our method as solving the
barrier-modified NCP

x ≥ 0, F (x) ≥ 0, xiF (x)i = µ.

However, a primal-dual method for this NCP would re-introduce the dual variables so there is
no benefit here of an NCP formulation other than to note the connection for future reference.
(An NCP formulation is appropriate if the problem were a variational inequality [1, 2] instead
of actual optimization.)

Algorithm design

Algorithm 16.1 [5] applies to (1). The POPDIP algorithm proposed below is the simplification
for gi(x) = xi. All such primal-dual interior point algorithms [6] compute approximate solutions
to systems like (4) for a sequence {µk > 0} going to zero. The limit where µ = 0, never achieved
because the algorithm is terminated after a finite number of steps, solves the KKT conditions (6).

Each step of the algorithm is a Newton step for the equalities in (4), namely

∇f(x)− λ = 0 (7)

λixi = µk, i = 1, . . . , n.

The step updates both x and λ using the linearization of these equations.
Because of the second equation, (7) is always a nonlinear system. However, if f is quadratic

then the first equation is linear.
To describe the Newton step let x = xk + ∆x and λ = λk + ∆λ. We assume that the current

iterate (xk, λk) does not solve (7). The unknowns in the Newton step form the search direction
p = (∆x,∆λ). Substituting into (7) and expanding to first order gives

∇f(xk) +∇2f(xk)∆x− λk −∆λ = 0 (8)

(λk)i(xk)i + (xk)i(∆λ)i + (λk)i(∆x)i = µk, i = 1, . . . , n

Rearranging as a linear block system for the search direction, and suppressing the current-iterate
subscript, we get step equations[

∇2f(x) −I
Λ X

][
∆x

∆λ

]
=

[
−∇f(x) + λ

−Λx+ µke

]
(9)

Here I is the n× n identity matrix and the other notation is as follows:

Λ =

λ1 . . .
λn

 , X =

x1 . . .
xn

 , e =

1
...
1

 .
Given a solution of (9) the update formulas are

xk+1 = xk + α∆x

λk+1 = λk + α∆λ
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A single maximum step size α for both the primal and dual variables is determined by a con-
dition of (strict) positivity for both xk+1 and λk+1 [6]. (A ratio test suffices to keep x feasible, in
common with how the slack variables are limited in a general primal-dual interior point method
[5, subsection 16.7.2]. Back-tracking is not needed to maintain feasibility of the primal variables
because of the linearity of the constraint functions in (1), namely gi(x) = xi.) Because this is a
Newton search one uses α = 1 for the largest allowed step. Note we use p = (∆x,∆λ) ∈ R2n as
a search direction.

The optimality test is the same as in Algorithm 16.1 [5]. It uses the merit function

ν(x, λ) = max{‖∇f(x)− λ‖, ‖Λx‖} (10)

where ‖ · ‖ denotes the usual L2 norm on Rn. Note that once µk → 0 we have ν(x∗, λ∗) = 0 for
the exact optimum, but when µk 6= 0 then the exact solution of (7) does not make ν(x, λ) zero. In
fact ν(x∗, λ∗) =

√
nµk for the exact solution of (7); if the merit function value ν(xk, λk) is close

to
√
nµk then we should decrease µk more rapidly.

Subsection 16.7.2 of [5] describes how Algorithm 16.1 should be modified so that, by Theo-
rem 16.17, the algorithm will exhibit the local quadratic convergence.1 They describe how the
general inequality constraints should be augmented by slack (excess) variables which have sim-
ple nonnegativity constraints, but in our case the constraints are already of that type.2 However,
Theorem 16.17 also uses a specific barrier parameter update for µk and a specific parameter
choice for κ in the ratio test. In our case these are equations

µk = min{θν(xk, λk), ν(xk, λk)
2},

κ = max{κ̄, 1− ν(xk, λk)},

for parameters 0 < θ < 1 and 0 < κ̄ < 1. We choose these parameters based on the minimal
hints in Example 16.16 on pages 643–644.

The method by which the initial dual variables are determined (below) is a somewhat ad hoc
construction for which I have no reference. This issue of initialization is discussed in [4].

Algorithm

We can now present a pseudocode for our algorithm.

ALGORITHM POPDIP.

inputs primal initial values x0 such that x0 > 0

smooth function f returning f(x),∇f(x), and ∇2f(x)

parameters 0 < tol [default tol = 10−4]

maxiters > 0 [default maxiters = 200]

0 < θ < 1 [default θ = 0.1]
1One would want this property for a Newton-type algorithm, but quadratic convergence is much harder to

achieve in a constrained problem. Thus I am interested in this algorithm!
2The general replacement “gi(x) ≥ 0” by “gi(x)− si = 0, si ≥ 0” would be, in our case, the replacement “xi ≥ 0”

by “xi − si = 0, si ≥ 0.” Clearly this is a meaningless renaming of the existing variables.
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0 < κ̄ < 1 [default κ̄ = 0.9]

output an estimate (xk, λk) of the solution

• determine initial dual variables:

(i) y0 = ∇f(x0)

(ii) if y0 ≤ 0 then µ0 = 1; otherwise µ0 is average of those products (x0)i(y0)i

where (y0)i > 0

(iii) (λ0)i = µ0/(x0)i for i = 1, . . . , n

• for k = 0, 1, 2, . . . ,maxiters− 1

(i) optimality test: if ν(xk, λk) < tol then stop
(ii) barrier parameter: µk = min{θν(xk, λk), ν(xk, λk)

2}
(iii) compute Newton step by solving this system for (∆x,∆λ):[

∇2f(xk) −I
Λk Xk

][
∆x

∆λ

]
=

[
−∇f(xk) + λk
−Λkxk + µke

]
(iv) ratio test for step sizes to keep xk+1, λk+1 positive:

κ = max{κ̄, 1− ν(xk, λk)}

α = min
1≤i≤n

{
1, −κ (xk)i

(∆x)i
: (∆x)i < 0, −κ (λk)i

(∆λ)i
: (∆λ)i < 0

}
(v) the update:

xk+1 = xk + α∆x

λk+1 = λk + α∆λ

This algorithm is implemented by a MATLAB code with signature

function [xk,lamk,xklist,lamklist] = popdip(x0,f,tol,maxiters,theta,kappabar)

Only inputs x0,f are required. The parameters have the default values listed above. If the
outputs xklist and lamklist are not requested then they are not saved.

Download the code at

bueler.github.io/M661F18/matlab/popdip.m

Example 1

We first try an easy 2D test problem in testpopdip.m:

minimize f(x) = 1
2(x1 − 1)2 + 1

2(x2 + 1)2

subject to x ≥ 0
(11)

For this objective function f the unconstrained minimum is the infeasible point x̂ = (1,−1)>.
A sketch shows that the exact solution of the constrained problem is x∗ = (1, 0)>. Running the
code with the given initial iterate x0 = (2, 2)> and tol = 10−14, and otherwise using the default
parameters in POPDIP, gives
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>> testpopdip([2 2]’,1.0e-14)
1: 2.000000000000000 2.000000000000000
2: 1.641421356237309 0.641421356237310
3: 1.245446520462486 0.245446520462486
4: 1.069404818969903 0.069404818969903
5: 1.013447008853577 0.013447008853577
6: 1.000537794151783 0.000537794151783
7: 1.000000867357066 0.000000867357066
8: 1.000000000002257 0.000000000002257
9: 1.000000000000000 0.000000000000000

The printed columns are (xk)1 and (xk)2. Note the apparent quadratic, or at least strongly su-
perlinear, convergence. The iterates xk are graphed in the following figure.
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Example 2

FIXME obstacle problem in 1D

f [u] =

∫ 1

0

1

2
|u′(x)|2 − q(x)u(x) dx (12)

∆x = 1/(n+ 1)

f(u) = ∆x

n∑
i=0

(
1

2

(
ui+1 − ui

∆x

)2

− q(xi+1/2)
ui + ui+1

2

)
(13)

where u0 = 0 and un+1 = 0 when they appear
gradient components for i = 1, . . . , n

∇f(u)i =
1

∆x


2u1 − u2 (i = 1)

−ui−1 + 2ui − ui+1 (1 < i < n)

−un−1 + 2un (i = n)

− ∆x

2
(q(xi−1/2) + q(xi+1/2)) (14)
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Hessian matrix

∇2f(u) =
1

∆x


2 −1

−1 2 −1
. . .
−1 2

 (15)

Possible improvements

We may consider possible improvements of our algorithm. First, in Algorithm 16.1 the compu-
tation of the Newton search direction is followed by separate line searches in x and in λ. These
line searches only maintain nonnegativity and they do not seek sufficient decrease of f(x); they
only use ratio tests. Secondly, equation (9) can be symmetrized by multiplying the second half
of the equations by −Λ−1:[

∇2f(x) −I
−I −Λ−1X

][
∆x

∆λ

]
=

[
−∇f(x) + λ

x− µkΛ−1e

]
(16)

FIXME further simplify into system of n equations for λ only
These facts suggests two possible changes:

1. Back-tracking line search is appropriate as a globalization even for unconstrained opti-
mization. Thus there must be cases where it is appropriate for problem (1) as well. Once
the ratio tests are applied, further back-tracking could be used based on sufficient decrease.
Compare the modified back-tracking line searches in [1].

2. One can replace linear system (9) with symmetrized system (16).

Determining if these are actual improvements would require testing which we have not done.
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