
Math 661 Optimization (Bueler) 6 November, 2018

Assignment #8
Due Monday, 19 November 2018, at the start of class (revised)

Please read sections 11.3, 11.4, 11.5, 12.2, 12.3 of the textbook.

DO THE FOLLOWING §11.5 EXERCISE FROM PAGE 386:
• Exercise 5.5. (Note this is for any differentiable function. Please assume that the

line search is exact. You do not need to address how it would be implemented.)

DO THE FOLLOWING §12.2 EXERCISE FROM PAGE 408:
• Exercise 2.3. (Make sure to calculate Q = ∇2f(x) and then cond(Q). For the last

“What conclusions . . . ” question, answer: What is the rate of convergence of f(xk)?)

DO THE FOLLOWING §12.3 EXERCISE FROM PAGE 521:
• Exercise 3.7. (Note that Bksk = yk is the “secant condition” on pages 412–413.)

Problem P13. Let φ be any number greater than one. Suppose the back-tracking
line search algorithm chooses αk as the first element of the sequence

1, 1/φ, 1/φ2, 1/φ3, . . .

satisfying the usual sufficient decrease condition with 0 < µ < 1, namely

f(xk + αkpk) ≤ f(xk) + µαkp
>
k∇f(xk).

What value of φ does the proof of Theorem 11.7 use? Describe how to modify that
proof so that the conclusion still holds with any φ > 1. (Suggestion: Quote from the
proof those parts that need to change. Then state the new version of those parts.)

Problem P14. Consider the one-variable problem

min
x∈R

f(x)

where f : R→ R is twice continuously-differentiable. Recall that the Newton method
to solve f ′(x) = 0, that is, the Newton method for the above minimization problem,
is given by the formulas pk = −f ′′(xk)−1f ′(xk) and xk+1 = xk + pk.

The secant method for minimization only differs from the Newton method by re-
placing the second derivative with a difference quotient approximation based on the
last two iterates:

f ′′(xk) ≈
f ′(xk)− f ′(xk−1)

xk − xk−1
.

Thus the secant method computes the step (search vector) by

pk = −
(xk − xk−1)f ′(xk)
f ′(xk)− f ′(xk−1)



2

(a) Implement the secant method.
(b) Use your code to solve the following problems and initial iterates:

i) f(x) = 3x4 − 4x3 + 3x2 − 6x, x0 = −1, x1 = 0
ii) f(x) = x2 − 2 sinx, x0 = 0, x1 = 1

(c) In (b) i) the exact minimum is at x∗ = 1. Compute the errors ek = xk−x∗. Give
evidence that the convergence is superlinear. Using the notation of section 2.5,
what is your estimate of the exponent r?

(d) Describe the performance of the secant method when f(x) is a quadratic func-
tion with a unique minimum.

Problem P15. Consider the problem

min
x∈Rn

f(x).

(a) Implement the symmetric rank-one method, described on page 414, to solve
this problem. That is, write a code

function [xk, xklist] = sr1bt(x0,f,tol)
which is a quasi-Newton method which

i) initially sets B0 = I , so the first step is steepest-descent,
ii) uses the symmetric rank-one formula (page 414) to update Bk to Bk+1,

iii) reverts to a steepest-descent step if a step is not a descent direction, and
iv) uses back-tracking line search.

The input x0 is a length n vector for the initial iterate, then input f is a
function which returns both the function value and the gradient,

function [fx, dfx] = f(x)
and the input tol is for the stopping criterion ‖∇f(xk)‖ ≤ tol. Base your
code on the steepest-descent-with-back-tracking code already written:

bueler.github.io/M661F18/matlab/sdbt.m
This code shows how to handle the inputs and outputs. It shows how to return
the final iterate xk and a list of iterates xklist.

(b) Test your code on the 2D quadratic function

f2D(x) = 5x21 +
1

2
x22,

using initial iterate x(0) = (1, 1)>, and on the 5D quadratic function

f5D(x) = 10x21 + 5x22 + x23 +
1

2
x24 +

1

10
x25,

using initial iterate x(0) = (1, 1, 1, 1, 1)>. Use tol= 10−6. How many iterations
are needed in each case?

(c) If you implemented the Newton method with back-tracking, how would its
performance compare on these functions? (No implementation needed.)

(d) On each of the functions in (b), compare actual performance, namely num-
ber of iterations, to steepest-descent-with-backtracking, i.e. using sdbt above.
Again use tol = 10−6.

http://bueler.github.io/M661F18/matlab/sdbt.m

