steepest descent, Newton method,
and back-tracking line search:
demonstrations and invariance

Ed Bueler

Math 661 Optimization

September 27, 2016



steepest descent with fixed steps

» consider the function f(x) = 5x2 + }x2

» try steepest descent: px = —VF(Xk), Xk11 = Xk + kP

» fixed ax = &: can get overshoot (/eff) or many steps (middle)
» ...one might “hand-tune” & for reasonable result (right)

20

10

-10

-20

|

-20

o |
&

o

* o

o
&

o

o

-20




steepest descent: back-tracking seems to help

» “hand-tuned” (left) and back-tracking (right) results seem to be
comparable in number of steps

o back-tracking shown in a few slides
» main question: is steepest-descent + back-tracking a good
algorithm?
o ...remember that for this function, which is quadratic
f(x) = 3x" Qx, the Newton method converges in one step

) I
& &

= o
o o

-10
-10

-20

-20




a more interesting example function

» consider this function:
f(x) = 2x{ — 4x2 +10xZ + 1x1 + x1 %2

o quartic, but not “difficult” like Rosenbrock
o visualized as a surface:




3 stationary points, 2 local min, 1 global min

» a clearer visualization as contours
» recall “stationary point” means Vf(x) = 0 (green x)




visualize equations Vf(x) =0

» “Vf(x) = 0”"is a system of two equations in two unknowns:

8X13*8X1+1§+X220,
X1 +20x> =0

» each of these equations is a curve (blue) in the x1, xo plane




visualized equations Vf(x) = 0 ... more clearly

L L 1 L L L L
-2-1.51-0.500.511.52

X1



code pits.m (posted online) computes f, Vf, and V3f

function [f, df, Hf] = pits(x)
% PITS Function with two local minima and one saddle. Unique global minimum.

if length(x) ~= 2, error(’x must be length 2 vector’), end
£=2.0 % x(1)% - 4.0 » x(1)*2 + 10.0 » x(2)"2 + 0.5 » x(1) + x(1) * x(2);
df = [8.0 = x(1)"3 — 8.0 » x(1) + 0.5 + x(2);

20.0 * x(2) + x(1)];
[24.0 % x(1)"2 - 8.0, 1.0;
1.0, 20.0];

for use with most optimization procedures it is best to have one
code generate f and its derivatives

all of these are allowed in MATLAB:
>> f = pits(x)

>> [f, df] = pits(x)

>> [f, df, Hf] = pits(x)




backtracking code bt .m (posted online)

function alphak = bt (xk,pk, f,dfxk,
alphabar, c, rho)
BT Use backtracking to compute fractional step length alphak.

o

oo

Dk = dfxk’ * pk;
if Dk >= 0.0
error ("pk is not a descent direction ... stopping’)
end
% set defaults according to which inputs are missing
if nargin < 6, alphabar = 1.0; end
if nargin < 7, c = 1.0e-4; end
if nargin < 8, «rho = 0.5; end

% implement Algorithm 3.1

alphak = alphabar;

while f(xk + alphak x pk) > f(xk) + c » alphak % Dk
alphak = rho x alphak;

end

» note how it sets defaults



steepest descent + back-tracking

1

X2
o

1

» choose three starting points
X = (1.5,0.5),(-0.2,—1),(-0.8,-0.4)
» use steepest descent search vector:
Pk = — V()

» works pretty well once contours are round



steepest descent + back-tracking: sensitive to scaling

> suppose we scale output of f: f(x) = 7f(x)
» this changes the behavior
o in this case for the better ... who knows generally ...



steepest descent + back-tracking: sensitive to scaling, cont.

» this time, optimize the “same function” but with input x, scaled:

i0=1(lo 4 )

» not so good: non-round contours = gradient not right direction



Newton + back-tracking

1

» redo last three slides but with Newton step:
Pk = —V2f(xk) "'V F(xk)

» red o are xx where py is not a descent direction



Newton + back-tracking: output-scale invariant

» now scale output of f: f(x) = 7f(x)
» makes no difference; why?



Newton + back-tracking: input-scale insensitive

1 T T T T

» now scale input xz:

i0=1(lo 4 [x))

» makes no difference; why?



conclusions: steepest descent

» steepest descent results are significantly affected by scaling of
either x or f(x)

» back-tracking helps with performance but does not address (or
fix) the scaling sensitivity



conclusions: Newton

» Newton is invariant to scaling of output f(x): if f(x) = Af(x) and
A > 0 then

pr = —V2H(x) V) = — (\TH(x)) T (AVF(x))
= —V2f(x) ' VI(xk) = p«

» Newton is invariant to scaling of input x: if f(z) = f(Sz) and
S € R™" s invertible then

B = —V2H(2) "' V(z) = — (STV2A(Sx¢)S) | (STVF(Sxk))
=-S5 'VP(Sx) " (ST) ' STVF(Sxk)
-S- sz(SXk) (SXk) 8_1[);(7

by Exercise 2.10, so

Xir1 = SZii1 = Sz + SP = Xk + SS™' P = Xk + P«



