
steepest descent, Newton method,
and back-tracking line search:
demonstrations and invariance

Ed Bueler

Math 661 Optimization

September 27, 2016



steepest descent with fixed steps

I consider the function f (x) = 5x2
1 + 1

2 x2
2

I try steepest descent: pk = −∇f (xk ), xk+1 = xk + αk pk

I fixed αk = α̃: can get overshoot (left) or many steps (middle)
I . . . one might “hand-tune” α̃ for reasonable result (right)



steepest descent: back-tracking seems to help

I “hand-tuned” (left) and back-tracking (right) results seem to be
comparable in number of steps

◦ back-tracking shown in a few slides
I main question: is steepest-descent + back-tracking a good

algorithm?
◦ . . . remember that for this function, which is quadratic

f (x) = 1
2 x>Qx , the Newton method converges in one step



a more interesting example function

I consider this function:

f (x) = 2x4
1 − 4x2

1 + 10x2
2 + 1

2 x1 + x1x2

◦ quartic, but not “difficult” like Rosenbrock
◦ visualized as a surface:



3 stationary points, 2 local min, 1 global min

I a clearer visualization as contours
I recall “stationary point” means ∇f (x) = 0 (green ×)



visualize equations ∇f (x) = 0

I “∇f (x) = 0” is a system of two equations in two unknowns:

8x3
1 − 8x1 +

1
2 + x2 = 0,

x1 + 20x2 = 0

I each of these equations is a curve (blue) in the x1, x2 plane



visualized equations ∇f (x) = 0 . . . more clearly



code pits.m (posted online) computes f , ∇f , and ∇2f

pits.m
function [f, df, Hf] = pits(x)
% PITS Function with two local minima and one saddle. Unique global minimum.

if length(x) ~= 2, error(’x must be length 2 vector’), end
f = 2.0 * x(1)^4 - 4.0 * x(1)^2 + 10.0 * x(2)^2 + 0.5 * x(1) + x(1) * x(2);
df = [8.0 * x(1)^3 - 8.0 * x(1) + 0.5 + x(2);

20.0 * x(2) + x(1)];
Hf = [24.0 * x(1)^2 - 8.0, 1.0;

1.0, 20.0];
end

I for use with most optimization procedures it is best to have one
code generate f and its derivatives

I all of these are allowed in MATLAB:
>> f = pits(x)
>> [f, df] = pits(x)
>> [f, df, Hf] = pits(x)



backtracking code bt.m (posted online)

function alphak = bt(xk,pk,f,dfxk, ...
alphabar,c,rho)

% BT Use backtracking to compute fractional step length alphak.
% ...
Dk = dfxk’ * pk;
if Dk >= 0.0

error(’pk is not a descent direction ... stopping’)
end

% set defaults according to which inputs are missing
if nargin < 6, alphabar = 1.0; end
if nargin < 7, c = 1.0e-4; end
if nargin < 8, rho = 0.5; end

% implement Algorithm 3.1
alphak = alphabar;
while f(xk + alphak * pk) > f(xk) + c * alphak * Dk

alphak = rho * alphak;
end

I note how it sets defaults



steepest descent + back-tracking

I choose three starting points
x0 = (1.5,0.5), (−0.2,−1), (−0.8,−0.4)

I use steepest descent search vector:

pk = −∇f (xk )

I works pretty well once contours are round



steepest descent + back-tracking: sensitive to scaling

I suppose we scale output of f : f̂ (x) = 7f (x)
I this changes the behavior

◦ in this case for the better . . . who knows generally . . .



steepest descent + back-tracking: sensitive to scaling, cont.

I this time, optimize the “same function” but with input x2 scaled:

f̃ (x) = f
([

1 0
0 4

] [
x1
x2

])
I not so good: non-round contours =⇒ gradient not right direction



Newton + back-tracking

I redo last three slides but with Newton step:

pk = −∇2f (xk )
−1∇f (xk )

I red ◦ are xk where pk is not a descent direction



Newton + back-tracking: output-scale invariant

I now scale output of f : f̂ (x) = 7f (x)
I makes no difference; why?



Newton + back-tracking: input-scale insensitive

I now scale input x2:

f̃ (x) = f
([

1 0
0 4

] [
x1
x2

])
I makes no difference; why?



conclusions: steepest descent

I steepest descent results are significantly affected by scaling of
either x or f (x)

I back-tracking helps with performance but does not address (or
fix) the scaling sensitivity



conclusions: Newton

I Newton is invariant to scaling of output f (x): if f̂ (x) = λf (x) and
λ > 0 then

p̂k = −∇2 f̂ (xk )
−1∇f̂ (xk ) = −

(
λ∇2f (xk )

)−1
(λ∇f (xk ))

= −∇2f (xk )
−1∇f (xk ) = pk

I Newton is invariant to scaling of input x : if f̃ (z) = f (Sz) and
S ∈ Rn×n is invertible then

p̃k = −∇2 f̃ (zk )
−1∇f̃ (zk ) = −

(
S>∇2f (Sxk )S

)−1
(S>∇f (Sxk ))

= −S−1∇2f (Sxk )
−1(S>)−1S>∇f (Sxk )

= −S−1∇2f (Sxk )
−1∇f (Sxk ) = S−1pk ,

by Exercise 2.10, so

xk+1 = Szk+1 = Szk + Sp̃k = xk + SS−1pk = xk + pk


