
Math 661 Optimization (Bueler) 19 October 2016

Review Guide for In-Class Midterm Exam

on Monday, 24 October 2016

The Exam is closed book. However, you may bring your own

notes on a single sheet of letter-sized (8.5 inch by 11 inch) or

smaller paper. Such notes must be entirely your work!

The first Midterm Exam will cover Chapters 1, 2, 3, and parts of Appendices A.1 and

A.2 in Nocedal & Wright, Numerical Optimization, 2nd edition. The first material below

states what is excluded material that will not be on the Exam. After that I state the

specific material that will be covered. My goal is to only cover topics that have appeared on

homework and in lecture.

The problems will be of these types: state definitions, prove or show theorems/lemmas

which follow reasonably-directly from the definitions or from known facts, give examples

with certain properties, or describe or illustrate/sketch certain concepts and examples.

Because you will not be able to refer to the book during the exam, so I will not ask you to

“state theorem 2.1” or anything like that. The only exception is that I will refer to problems

in “form (1.1)” as short-hand for the standard (general) continuous optimization problem.

Please get together with other students and work through this Review Guide. Be honest

with yourself about what you do and don’t know, and talk it through and learn!

Excluded material. The following material will not be on the exam:

• the “transportation problem” on pages 5–6

• any “trust region” methods, such as discussions on pages 19–20 and 25–26

• the “symmetric-rank-one (SR1)” formula (page 24)

• strong Wolfe conditions (equations (3.7) page 34)

• Goldstein conditions (page 36)

• “line search algorithm for the Wolfe conditions” (pages 60–62)

• section 3.4 on “Newton’s method with Hessian modification” (pages 48–49)

• those parts of section 3.5 on “a line search for the Wolfe conditions” (pages 60–62)

• in Appendix A.1:

◦ the dual norm, equation (A.6) (page 601)

◦ the SVD (page 604)

◦ material on determinant and trace (pages 605–606)

◦ the QR and the symmetric indefinite factorizations (page 609–612)

◦ the interlacing eigenvalue theorem, error analysis and floating-point arithmetic,

and conditioning and stability (pages 613–617)

• in Appendix A.2:

◦ the topology of Euclidean space Rn and convex sets in Rn (pages 620–623)

◦ the implicit function theorem (pages 630–631)
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Definitions and Notation. Be able to state and use the definition, and/or use the nota-

tion/language correctly:

• problem (1.1) on page 3:

◦ objective function and constraint functions

◦ equality and inequality constraints

◦ constrained versus unconstrained problems

• convex set (page 8)

• convex and strictly-convex function (page 8)

• global and/or local minimizer (page 12)

• strict and/or isolated local minimizer (page 13)

• gradient ∇f(x) and Hessian ∇2f(x) (page 626)

• directional derivative ∇f(x)>p (pages 628–629)

• vector norms (A.2)–(A.5) (page 600)

• matrix norms (A.7)–(A.10) (page 601)

• condition number (A.11) (page 601)

• symmetric, positive-definite, and positive-semidefinite matrices (page 599)

• short-hand: SPD = symmetric and positive-definite

• triangular, diagonal, and nonsingular matrices (page 599)

• eigenvalues and eigenvectors (page 603)

• Euclidean matrix norms ‖A‖, ‖A−1‖ of SPD matrices from eigenvalues (page 605)

• descent direction: ∇f(xk)>pk < 0 (page 21)

• line search: find αk by solving or approximately solving (2.10) (page 19)

• Wolfe conditions (3.6a), (3.6b) (page 34)

• Q-linear, Q-superlinear, and Q-quadratic convergence in Rn (pages 619–620)

Algorithms. Be able to state the algorithm. Be able to illustrate with an example or give

a sketch.

• steepest descent method: pk = −∇f(xk) & xk+1 = xk + αkpk (page 21)

• Newton method: pNk = −∇2f(xk)−1∇f(xk) & xk+1 = xk + αkp
N
k (page 22)

• quasi-Newton method: pk = −B−1k ∇f(xk) & xk+1 = xk + αkpk (page 24)

• BFGS update formula (2.19) gives a quasi-Newton method (page 24)

• backtracking line search (page 37)

• triangular forward/back substitution for Ly = b or Ux = y (pages 606–607)

• Gaussian elimination as LU factorization/decomposition A = LU or PA = LU

(pages 606–607)

• Cholesky factorization A = LL> for SPD matrix A (pages 608–609)
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Theorems and Lemmas. Understand these and remember them as facts. Be able to

illustrate with an example or give a sketch. You may use these facts as needed in proving

other propositions, but mention such use.

• Taylor’s Theorem, especially (2.4) and (2.6) (page 14)

• Theorem (spectral decomposition): If A ∈ Rn×n is symmetric then there exist real

eigenvalues λ1, λ2, . . . , λn and an orthonormal basis of eigenvectors q1, q2, . . . , qn so

that Aqi = λiqi and A = QΛQ> where Q =
[
q1
∣∣ . . . ∣∣qn] and Λ is diagonal with entries

λi. (page 604)

• first-order necessary conditions Theorem 2.2 (page 14) [be able to prove]

• second-order necessary conditions Theorem 2.3 (page 15)

• second-order sufficient conditions Theorem 2.4 (page 16)

• Theorem 2.5 on minimizers of convex functions (page 16) [be able to prove]

• Sherman-Morrison-Woodbury formula (A.27) (page 612)

• Lemma 3.1: there exist step sizes αk so that Wolfe conditions are satisfied (page 35)

• Theorem 3.2: if pk are descent directions, f is bounded below, ∇f is Lipschitz, and

the step sizes αk satisfy the Wolfe conditions then
∑∞

k=0(cos θk)2‖∇f(xk)‖2 < ∞
(pages 38–39)

• Corollary: steepest descent with a Wolfe-satisfying line search gives xk so that

‖∇f(xk)‖ → 0 (pages 39–40) [be able to prove]

• Theorem 3.3: steepest descent on a quadratic function f(x) = 1
2
x>Qx− b>x gives at

least linear convergence in Q-norm (page 43)

• Theorem 3.5: Newton’s method gives quadratic convergence under reasonable con-

ditions, once you are close enough to the minimizer x∗ (page 44)


