
Math 661 Optimization (Bueler) December 6, 2016

Final Exam

Due 5pm on Thursday 12/15/2016, in my office box (Chapman 101).

135 points total. As stated on the syllabus, this exam is 20% of your course grade.

Rules. This take-home exam is your own work. You may not talk or communicate
about it with any person other than me, Ed Bueler. You are encouraged to ask me
questions about the exam during lecture time, and also during my office hours. You
may use any reference book or article, print or electronic, as long as it is clearly cited.
(References to the textbook Nocedal & Wright are optional.)

Recommendations. You may use codes posted at the class webpage,
bueler.github.io/M661F16/

Concretely, it is recommended that you use the following codes as needed in solving
problems on this exam:

bfgsbt.m bt.m newtonbt.m

newtonsolve.m rsimpII.m sdbt.m

You may modify these codes as desired, but that is not particularly recommended.
Unmodified versions of my codes do not need to be shown in your submitted work,
but if you make modifications, or if you re-implement in another language, such
codes should be included. Just as for Assignments during the semester, you may
not use black box optimization codes from outside of this class, whether from Oc-
tave/Matlab/Scipy/etc. or elsewhere.

When you use a code, do show me the inputs and commands you used. Do show
me code which you wrote. Do show me a few numbers which report and justify the
answer. Do not spew unnecessary numbers at me. In general, report norms of vectors
to show smallness or closeness. Report vectors themselves only if they are answers.

F1. Define the smooth function

f(x) =
1

5
arctan(x1) + x21 + 3x2 + (x2 − x3)2 +

1

4
x43

for x ∈ R3. Consider the unconstrained optimization problem minx∈R3 f(x).

(a) (5 pts) Compute the gradient ∇f(x) and the Hessian ∇2f(x).

(b) (15 pts) Show that the Hessian is everywhere symmetric and positive semi-definite. (Hint. The

Hessian is not constant. You would be wise to think about, and calculate, its eigenvalues.) It follows

that f(x) is convex.1 Next, find all points where the Hessian is not positive definite. Show these are

not locations of local minima. (Identify a theorem in the book that shows this.) Conclude that there

is a unique global minimum x∗ where both ∇f(x∗) = 0 and ∇2f(x∗) is SPD. (Identify theorem(s)

in the book that allow you to conclude this.)

(c) (15 pts) Write a code that uses (i) steepest descent and (ii) Newton method to find x∗. Both

approaches (i) and (ii) should give the same result to 5 decimal digits. Also report the number of

steps taken for (i) and (ii).

1There is nothing to prove here. Nonetheless the following is a consequence of Taylor’s Theorem: A smooth function

f is convex on Rn if and only if its Hessian matrix is positive semi-definite at all points.

http://bueler.github.io/M661F16/
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F2. For x ∈ R2, define the smooth function

f(x) = x41 + 2x42 − (x1 + x2)
2 − x1.

(a) (10 pts) Suppose x0 ∈ R2. What method would you choose, of those covered during the semester,

to find a local minima x∗ of f? Justify your choice of method/algorithm; write four to eight sentences.

(b) (20 pts) In fact this function f(x) has exactly two local minima, and they are in the square

(x1, x2) ∈ [−2, 2] × [−2, 2]. Given this knowledge, set up a grid of 25 to 100 (total) points x0 in

this square. Write a code which uses your chosen method to converge to a local minimum x∗ from

each initial x0 in the grid. By examining the results, identify the locations of the two local minima,

accurate to 5 digits, and their corresponding f values. Thus determine which one is the global

minimum. Generate a figure which shows both the grid of initial points and the two local minima.

(c) (5 pts) Confirm your solution in part (b) by generating a contour plot of f(x) on [−2, 2]× [−2, 2].

Take some care in choosing which contour lines to show.

F3. For x ∈ R3, define the smooth function f(x) = x21+x42+3x23. Consider the equality-constrained

problem

min
x∈R3

f(x) subject to x1 − x2 − x3 = 4.

(a) (5 pts) Explain geometrically, though informally, why this problem has exactly one solution.

State the KKT conditions (12.34) which apply to this problem.

(b) (5 pts) The KKT conditions are a system of nonlinear equations in the four variables x1, x2, x3, λ.

Write this system of equations in the form used in Chapter 11 of the textbook, namely in the form

r(z) = 0 where z =
[
x1 x2 x3 λ

]>
. Compute r(z) and the Jacobian J(z). Note that you can set

things up so that the Jacobian is a symmetric matrix; do so.

(c) (15 pts) Write a code that solves r(z) = 0 by using Newton’s method with a line search. Run it

and report the solution x∗ and λ∗ accurate to 5 digits, and the number of steps.

(d) (5 pts) How is line search done by the algorithm in part (c)? Explain in a couple of sentences.

(e) (5 pts) Confirm numerically that the “gradient balance” condition (12.35) holds, namely∇f(x∗) =∑
i∈A(x∗) λ

∗
i∇ci(x∗). (Do this by computing a norm that it is small.)

F4. Consider—read carefully!—the linear program

max
x∈R3

4x1 + 2x2 + x3 subject to

x1 ≤ 2

3x1 + x2 ≤ 8

5x1 + 3x2 + x3 ≤ 20

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

(a) (10 pts) Carefully sketch the feasible region in R3. Identify the coordinates of each vertex, and

label the vertices with these coordinates. Make the sketch both nice and big.

(b) (5 pts) By adding slack variables x4, x5, x6, and, by also correcting other aspects, put this

problem in standard form (13.1).

(c) (5 pts) Starting with B = {4, 5, 6}, do one step by hand using the simplex method template.

The initial iterate will be x(0) = [0 0 0 x4 x5 x6]; do the work to compute x(1). You may use a blank

template bueler.github.io/M661F16/linprogtemplate.pdf and attach it at the end.

(d) (10 pts) Run rsimpII.m with the spew = true option. This will give the solution and the

number of steps k. Using a colored pen, circle and label the vertices for iterates x(0), x(1), . . . , x(k).

http://bueler.github.io/M661F16/linprogtemplate.pdf

