Math 661 Optimization (Bueler) 1 September, 2016

A brute-force solution to problem “beam”

As noted in the “Five example optimization problems” handout, problem beam is in-
trinsically infinite-dimensional.
The set of possible inputs to the functional /[h] is

X = {f : f"is square-integrable on [0, 7] and also f(0) = f(7) =0} .

This is a real vector space of functions.! Why is X’ infinite-dimensional, you say? The

answer is that you cannot specify each element using a fixed, finite number of coefficients.?
For example, and as a hint about the solution method adopted below, the following
infinite list of functions live in A™:

S = {sinz, sin 2z, sin 3z,sin4dz, ...} C X.

This set is linearly-independent; that is, on cannot write one element of S, say sin kz,
exactly as a finite linear combination of other elements of the set S. In the appropriate
senses, S is a basis for A’ and it is an orthogonal set. For example—this is an instance of
Fourier series—the function f(z) = z(w — z) is in X’ and, on the other hand, there are
coefficients ay, so that®

[e.9]
flx)=z(r—2)= Zaksinkx eX.
k=1
But one cannot (exactly) write this f(x) without an infinite sum.

Despite being infinite-dimensional, this kind of beam problem is completely standard in
the engineering and physics literature; it is a problem in the calculus of variations. Because
of the infinite-dimensionality, only an approximation of the solution can be computed in
a finite amount of solution time.

The problem is constrained, however, so the solution cannot be just anywhere in the
infinite-dimensional vector space X. The solution lives in an infinite-dimensional convex
subset of X

K={feX :09<f(1)<1l.land1.2< f(2)<1l.4and0.4 < f(3) <0.6}.

This is the feasible set. It is like a polyhedron; it is a polytope in X'.

1o that, for example, given any pair of functions fi, f> € X, and any real numbers a1, as, the linear
combination ai fi + a2 f2 is also in X.

21f it were possible, the number of such coefficients would be the dimension of X'

3A few points extra credit will be given to anyone who computes the coefficients ax. exactly, and then plots
a finite Fourier sum fx(x) = "5, ax sin kz showing that the computed coefficients are likely to be correct.

4Actually, this approximate-only status already holds for problem calcone, which is in 1D. In theory the
exact solutions of fit, salmon, and tsp are all possible in finite time.



For now we just want a method that finds an acceptable approximate solution, even if
by brute-force. So we restrict our functions to a five-dimensional (5D)° space of truncated
Fourier sine series:

= H@S = {[Cl Co C3 Cq 65]},
where ¢ € X; represents the function h(z) = 3 5_, ¢x sinkz € X. Using trigonometry we
can exactly compute I[h] for a function h(z) corresponding to ¢ € Xs:

5
1 [ 1 [
][h]:§/0 |h//(x)|2dx:§/o (—Zk%ksinkx> dr = - Zchck] k> / sin jx sin kz dx

_]1k1
5

5 5
1 m
ZZC ck]2k2/ cos((j — k)x) — cos((j + k)z =1 Zchck32k2 (méj —0) = 1

j=1k=1 0 j=1k

»Mr—\
i
Mw

k=1

(This calculation, which uses the identity sin asin 8 = 3 cos(a — 8) — 5 cos(a + ), will not

surprise those who have used Fourier series.)

The constraint “0.9 < h(1) < 1.1” can be enforced in X5 by using the formula h(z) =
S| cpsinkx and evaluating at - = 1. Thus the approximating 5D optimization problem
is now (essentially) in form (1.1) from the textbook:

0.9 <30 cpsink < 1.1
min I5(c)  subjectto  1.2< 3} cpsin2k < 1.4
cek 0.4 < S, cpsin3k < 0.6

where
5
T
_ § 4 2
= Z k Ck‘
k=1

This is called a quadratic programming problem because I5(c) is quadratic in ¢ and the con-
straints are linear in ¢; see textbook Chapter 16. Our problem is now a constrained, 5D
version of the unconstrained 3D problem fit.

We do not know, however, which of the inequality constraints is active (i.e. the inequal-
ity is equality) when c is the solution of the problem. The subset of R® which satisfies the
constraints, though it is a 5D polytope, is not clear enough to only look at feasible points.
Thus we will solve the our 5D problem by brute force, searching on a grid of points inside
abox in R?, in the hope that we cover enough of the constrained set to include points near
the minimum. Only trial-and-error can make this possible.

The proposed box, based on trial-and-error, is

Bs={0<c1<2 -1<¢3<1,-05<¢3<05, —02<¢4 <02, —02<¢5 <02},

The code below puts a grid with a given spacing on this box. At each grid point c it checks
feasibility (i.e. constraints) and, if feasible, it evaluates I5(c) for that point. Running the
code with a grid of sufficient coarseness to give a reasonable execution time, namely a few
minutes, looks like

51t can be N dimensional for any N ...but the number of (search) grid points goes up exponentially with V!
The value N = 5 represents a trial-and-error-determined compromise between answer quality and execution
time. Strategies in Chapter 16 will overcome this difficulty.



>> [z h] =
z = 5.8316
h =

1.40000

beam(0.05)

-0.30000 0.15000 -0.05000 0.05000

During the run the code shows characters ./o/* for progress made so far, indicating
when it finds feasible solutions and the best solution so far; this is not shown.

Thus c¢;

=14,¢c = —0.3, c3 = 0.15, ¢4 = —0.05, and ¢5 = 0.05 is the solution from

this brute-force search, giving minimum value I5(c) = 5.8316. I have also posted a code
plotbeam.m which plots the tent pole corresponding to a given ¢ € R®. The command
“plotbeam (h)” plots the figure at the end, which I believe is pretty close to the solution!

A0 A0 o0 0 A0 o A0 0 I o0 d° o°

function [z h] = beam(cspace)

N = 5;
bounds = [0.9 1.1;
1.2 1.4;
0.4 0.6];
z = 1.0el00;
h = zeros(1,N);
for cl = 0.0:cspace:2.0
for c2 = -1.0:cspace:1.0
fprintf (' .")
for ¢3 = -0.5:cspace:0.5
for c4 = -0.2:cspace:0.2
for ¢5 = -0.2:cspace:0.2
htest = [cl c2 c3 c4 c5];
hl = evalh(htest,1);
pl = (hl >= bounds(1,1)) & (hl <= bounds(1,2));
if pl
h2 = evalh(htest, 2);
p2 = (h2 >= bounds(2,1)) & (h2 <= bounds(2,2));
if p2
h3 = evalh (htest, 3);
p3 = (h3 >= bounds(3,1)) & (h3 <= bounds(3,2));
if p3

BEAM Solve tent pole optimization problem by approximation and brute force.
The height of the pole is represented by a list of N=5 coefficients in a
Fourier sine series,

h(x) = cl sin(x) + c2 sin(2 x) + c3 sin(3 x) + c4 sin(4 x) + c5 sin(5 x)
Grid of coefficients c_j, with spacing cspace, in five dimensions, is

searched. Does integral exactly.

Example run:
>> [z h] = beam(0.05)
>> plotbeam (h)
WARNING: Several minutes run time! This case checks 2.9 million
= 41%41%21%9%9 points. It runs at least 5 times faster if 0.05 --> 0.1.

fval = f(htest);
if fval < z




z = fval;

h = htest;

fprintf (7 x")
else

fprintf (’o’)

end
end
end
end
end
end
end
end
end
fprintf (“\n’)
function z = evalh(h, x)
k = 1:N;
z = h » sin(k » x)’;
end
function z = f (h)
k = 1:N;
z = (pi/4.0) * k.4 x (h."2)";
end
end
1.5 T
L
T
1
1 - -
<
0.5 i
O Il Il Il Il Il
0 0.5 1 1.5 2 25 35




