
Math 661 Optimization (Bueler) 1 September, 2016

A brute-force solution to problem “beam”

As noted in the “Five example optimization problems” handout, problem beam is in-
trinsically infinite-dimensional.

The set of possible inputs to the functional I[h] is

X =
{
f : f ′′ is square-integrable on [0, π] and also f(0) = f(π) = 0

}
.

This is a real vector space of functions.1 Why is X infinite-dimensional, you say? The
answer is that you cannot specify each element using a fixed, finite number of coefficients.2

For example, and as a hint about the solution method adopted below, the following
infinite list of functions live in X :

S = {sinx, sin 2x, sin 3x, sin 4x, . . . } ⊂ X .

This set is linearly-independent; that is, on cannot write one element of S, say sin kx,
exactly as a finite linear combination of other elements of the set S. In the appropriate
senses, S is a basis for X and it is an orthogonal set. For example—this is an instance of
Fourier series—the function f(x) = x(π − x) is in X and, on the other hand, there are
coefficients ak so that3

f(x) = x(π − x) =
∞∑
k=1

ak sin kx ∈ X .

But one cannot (exactly) write this f(x) without an infinite sum.
Despite being infinite-dimensional, this kind of beam problem is completely standard in

the engineering and physics literature; it is a problem in the calculus of variations. Because
of the infinite-dimensionality, only an approximation of the solution can be computed in
a finite amount of solution time.4

The problem is constrained, however, so the solution cannot be just anywhere in the
infinite-dimensional vector space X . The solution lives in an infinite-dimensional convex
subset of X :

K = {f ∈ X : 0.9 ≤ f(1) ≤ 1.1 and 1.2 ≤ f(2) ≤ 1.4 and 0.4 ≤ f(3) ≤ 0.6} .

This is the feasible set. It is like a polyhedron; it is a polytope in X .

1So that, for example, given any pair of functions f1, f2 ∈ X , and any real numbers a1, a2, the linear
combination a1f1 + a2f2 is also in X .

2If it were possible, the number of such coefficients would be the dimension of X .
3A few points extra credit will be given to anyone who computes the coefficients ak exactly, and then plots

a finite Fourier sum fN (x) =
∑N

k=1 ak sin kx showing that the computed coefficients are likely to be correct.
4Actually, this approximate-only status already holds for problem calcone, which is in 1D. In theory the

exact solutions of fit, salmon, and tsp are all possible in finite time.

2

For now we just want a method that finds an acceptable approximate solution, even if
by brute-force. So we restrict our functions to a five-dimensional (5D)5 space of truncated
Fourier sine series:

X5 = R5 = {[c1 c2 c3 c4 c5]},
where c ∈ X5 represents the function h(x) =

∑5
k=1 ck sin kx ∈ X . Using trigonometry we

can exactly compute I[h] for a function h(x) corresponding to c ∈ X5:

I[h] =
1

2

∫ π

0

|h′′(x)|2 dx =
1

2

∫ π

0

(
−

5∑
k=1

k2ck sin kx

)2

dx =
1

2

5∑
j=1

5∑
k=1

cjckj
2k2

∫ π

0

sin jx sin kx dx

=
1

4

5∑
j=1

5∑
k=1

cjckj
2k2

∫ π

0

cos((j − k)x)− cos((j + k)x) dx =
1

4

5∑
j=1

5∑
k=1

cjckj
2k2 (πδjk − 0) =

π

4

5∑
k=1

k4c2k.

(This calculation, which uses the identity sinα sinβ = 1
2 cos(α− β)−

1
2 cos(α+ β), will not

surprise those who have used Fourier series.)
The constraint “0.9 ≤ h(1) ≤ 1.1” can be enforced in X5 by using the formula h(x) =∑5
k=1 ck sin kx and evaluating at x = 1. Thus the approximating 5D optimization problem

is now (essentially) in form (1.1) from the textbook:

min
c∈R5

I5(c) subject to
0.9 ≤

∑5
k=1 ck sin k ≤ 1.1

1.2 ≤
∑5

k=1 ck sin 2k ≤ 1.4

0.4 ≤
∑5

k=1 ck sin 3k ≤ 0.6

where

I5(c) =
π

4

5∑
k=1

k4c2k.

This is called a quadratic programming problem because I5(c) is quadratic in c and the con-
straints are linear in c; see textbook Chapter 16. Our problem is now a constrained, 5D
version of the unconstrained 3D problem fit.

We do not know, however, which of the inequality constraints is active (i.e. the inequal-
ity is equality) when c is the solution of the problem. The subset of R5 which satisfies the
constraints, though it is a 5D polytope, is not clear enough to only look at feasible points.
Thus we will solve the our 5D problem by brute force, searching on a grid of points inside
a box in R5, in the hope that we cover enough of the constrained set to include points near
the minimum. Only trial-and-error can make this possible.

The proposed box, based on trial-and-error, is

B5 = {0 ≤ c1 ≤ 2, −1 ≤ c2 ≤ 1, −0.5 ≤ c3 ≤ 0.5, −0.2 ≤ c4 ≤ 0.2, −0.2 ≤ c5 ≤ 0.2} .

The code below puts a grid with a given spacing on this box. At each grid point c it checks
feasibility (i.e. constraints) and, if feasible, it evaluates I5(c) for that point. Running the
code with a grid of sufficient coarseness to give a reasonable execution time, namely a few
minutes, looks like

5It can be N dimensional for any N . . . but the number of (search) grid points goes up exponentially with N !
The value N = 5 represents a trial-and-error-determined compromise between answer quality and execution
time. Strategies in Chapter 16 will overcome this difficulty.

3

>> [z h] = beam(0.05)

...

z = 5.8316

h =

1.40000 -0.30000 0.15000 -0.05000 0.05000

During the run the code shows characters ./o/* for progress made so far, indicating
when it finds feasible solutions and the best solution so far; this is not shown.

Thus c1 = 1.4, c2 = −0.3, c3 = 0.15, c4 = −0.05, and c5 = 0.05 is the solution from
this brute-force search, giving minimum value I5(c) = 5.8316. I have also posted a code
plotbeam.m which plots the tent pole corresponding to a given c ∈ R5. The command
“plotbeam(h)” plots the figure at the end, which I believe is pretty close to the solution!

beam.m

function [z h] = beam(cspace)

% BEAM Solve tent pole optimization problem by approximation and brute force.

% The height of the pole is represented by a list of N=5 coefficients in a

% Fourier sine series,

% h(x) = c1 sin(x) + c2 sin(2 x) + c3 sin(3 x) + c4 sin(4 x) + c5 sin(5 x)

% Grid of coefficients c_j, with spacing cspace, in five dimensions, is

% searched. Does integral exactly.

%

% Example run:

% >> [z h] = beam(0.05)

% >> plotbeam(h)

% WARNING: Several minutes run time! This case checks 2.9 million

% = 41*41*21*9*9 points. It runs at least 5 times faster if 0.05 --> 0.1.

N = 5;

bounds = [0.9 1.1;

1.2 1.4;

0.4 0.6];

z = 1.0e100;

h = zeros(1,N);

for c1 = 0.0:cspace:2.0

for c2 = -1.0:cspace:1.0

fprintf(’.’)

for c3 = -0.5:cspace:0.5

for c4 = -0.2:cspace:0.2

for c5 = -0.2:cspace:0.2

htest = [c1 c2 c3 c4 c5];

h1 = evalh(htest,1);

p1 = (h1 >= bounds(1,1)) & (h1 <= bounds(1,2));

if p1

h2 = evalh(htest,2);

p2 = (h2 >= bounds(2,1)) & (h2 <= bounds(2,2));

if p2

h3 = evalh(htest,3);

p3 = (h3 >= bounds(3,1)) & (h3 <= bounds(3,2));

if p3

fval = f(htest);

if fval < z

4

z = fval;

h = htest;

fprintf(’*’)

else

fprintf(’o’)

end

end

end

end

end

end

end

end

end

fprintf(’\n’)

function z = evalh(h,x)

k = 1:N;

z = h * sin(k * x)’;

end

function z = f(h)

k = 1:N;

z = (pi/4.0) * k.ˆ4 * (h.ˆ2)’;

end

end

0 0.5 1 1.5 2 2.5 3 3.5

x

0

0.5

1

1.5

h

