
Math 661 Optimization (Bueler) December 2, 2016

Assignment #9
REVISED→ Due Wednesday, 7 December at the start of class

Please read Chapters 13 and 15 in Nocedal & Wright. Do the following Exercises
and Problems.

Exercise 13.1. (Hint. Pages 356–357.)

Problem P22. Fix α ∈ R. Consider the linear programming problem

min αx1 − 2x2 subject to −3x1 + x2 ≤ 1

6x1 − 2x2 ≤ 9

x1 ≥ 0, x2 ≥ 0

(a) Sketch the feasible set with some care and note it is unbounded. For what
values of α does the problem have a solution?

(b) Add slack variables to put the problem in standard form (13.1). For the par-
ticular value α = 10, solve the problem by hand using the simplex method and a
template as done in class. (Start with a basic feasible point (vector) with x1 = x2 = 0

as in the examples done in lecture. If needed, download and print the template from online:
bueler.github.io/M661F16/linprogtemplate.pdf )

(c) To confirm your answer from part (b), run the code rsimpII.m, which I
posted at

bueler.github.io/M661F16/matlab/rsimpII.m,
You probably want to start by typing “help rsimpII”.

Problem P23. Recall least-squares problems from Chapter 10. It is common to minimize
a sum of squares of misfits (i.e. residuals), but subject to additional “exact” requirements,
giving an equality-constrained problem (e.g. as in Chapter 12). Such problems are often
called “inverse modeling.” This is a visualizable and finite-dimensional example.

Consider the two sets of data
t 1 4
w 2 1

,
t 0 2 3 5 6
y 1 1 2 2 3

The first set of data with q = 2 points is marked by stars (∗) in the Figure on the next
page, and the second with m = 5 points is marked by circles (◦).

Consider the problem of finding a cubic polynomial which fits the second data
set as closely as possible, but which is required to exactly fit the first data set. That is,
the polynomial must pass through the two stars. Using the notation of Chapter 10,
let

φ(x; t) = x1 + x2 t+ x3 t
2 + x4 t
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http://bueler.github.io/M661F16/linprogtemplate.pdf
http://bueler.github.io/M661F16/matlab/rsimpII.m
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be the model, with parameters x ∈ Rn where n = 4. For rj(x) = φ(x; tj)− yj let

f(x) =
1

2
‖r(x)‖2 = 1

2

m∑
j=1

rj(x)
2.

(Note that only the second data set is used in building f(x).) We require that the model
exactly fits the first data set, so this is an equality constraint. Thus the problem is in
form (1.1) = (12.1), namely

min
x∈Rn

f(x) subject to Ex = w. (1)
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(a) Explain why f(x) = 1
2
‖Jx− y‖2 where y is from the second data set and

J =


1 0 0 0

1 2 4 8

1 3 9 27

 ∈ Rm×n;

please fill in the remaining entries of the matrix. (Your answer should start by defining
J , and only then computing the entries.) Then compute, using the formula for φ(x; t)
and the first set of data, a specific matrix E ∈ Rq×n and vector w ∈ Rq for the
constraints in problem (1).

(b) Consider the Lagrangian for problem (1),

L1(x, λ) =
1

2
‖Jx− y‖2 − λ> (Ex− w) ,
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with λ ∈ Rq. Show that the KKT conditions (12.34) for problem (1) can be written
“blockwise” as [

J>J −E>
−E 0

] [
x

λ

]
=

[
J>y

−w

]
. (2)

The matrix A1 on the left in (2) has size (n+ q)× (n+ q).
Show A1 is symmetric but that it is not SPD. (This should be answered theoreti-

cally, though it may be confirmed numerically. Find a nonzero vector z ∈ Rn+q for which
z>A1z = 0.)

Also, using MATLAB, compute cond(A1).1

(c) It turns out that the condition number in part (b) is larger than necessary.
We reformulate (1) as

min
r∈Rm

1

2
‖r‖2 subject to Ex = w and r = Jx− y. (3)

Note r ∈ Rm is now a variable, not a function. There is no need to confirm that (3)
is equivalent to (1); it should be obvious. The question we address, by looking at
condition numbers, is why you would transform the problem this way.

Define a new Lagrangian

L2(r, µ, λ, x) =
1

2
‖r‖2 − λ> (Ex− w)− µ> (Jx− y − r) ,

with r ∈ Rm, µ ∈ Rm, λ ∈ Rq, x ∈ Rn.
Show that the KKT conditions for problem (3) can be written as I 0 −J

0 0 E

−J> E> 0

rλ
x

 =

−yw
0

 . (4)

(Oddly enough, you eliminate the “extraneous” multipliers µ in writing this down!)
The matrix A2 on the left in (4) has size N × N where N = m + q + n, and thus it
might be much bigger than A1 in (2), but it is rather sparse. Again A2 is symmetric
but not SPD; there is no need to prove this.

Using MATLAB, compute cond(A2).

(d) Now use MATLAB to implement both (2) and (4) to solve the problem posed
at the beginning. Confirm that the solutions x and λ are the same. (Don’t show me
a lot of numbers. Show norms of differences of vectors that should be the same.) Then plot
the result on top of the data, so that you generate a Figure like the one above but
showing both the original data and the solution.

1This condition number, even on such a small problem, is large enough to cause several digits
of error in solving (2) numerically. In bigger problems of this least-squares-with-constraints type,
the loss of accuracy coming from an ill-conditioned system matrix can be catastrophic when using
formulation (2).


