Assignment #8

Due Monday, 28 November at the start of class

Please read Chapter 12 in Nocedal & Wright, especially the material on pages 304–323. Do the following Exercises and Problems.

Exercise 12.5. There are two different objective functions f(x) to consider. For each one, rewrite the unconstrained minimization problem as a smooth constrained problem. (*Hint*: Consider the example in (12.7) and (12.8) on page 307. Also note that vector norm $\|\cdot\|_{\infty}$ is defined by (A.2c) on page 600.)

Exercise 12.7.

Exercise 12.13. Ignore the request to show that the MFCQ is satisfied. Just show that the LICQ is *not* satisfied at $x^* = (0,0)$.

Exercise 12.15.

Exercise 12.16.

- **Exercise 12.17.** (*Hint*: Exploit comment (12.35).)
- **Exercise 12.19.** Ignore part (d). In part (c), do find $\mathcal{F}(x^*)$ but ignore the request to write down $\mathcal{C}(x^*, \lambda^*)$.

Problem P21. (*This problem replaces, and expands upon, Exercise* 12.20.) Let $f(x) = x_1x_2$ and $c_1(x) = x_1^2 + x_2^2 - 1$. Consider the equality-constrained problem

 $\min_{x \in \mathbb{R}^2} f(x) \qquad \text{subject to} \quad c_1(x) = 0.$

(a) Illustrate the problem with a sketch. How many solutions x^* are there? (*The solution*(*s*) *should become clear just from doing the sketch.*) Indicate gradients $\nabla f(x^*)$ and $\nabla c_1(x^*)$.

(b) State the full KKT system (12.34), in detail. Start by giving the index sets \mathcal{E}, \mathcal{I} so it is clear why some parts of (12.34) are empty.

(c) Do algebra on the KKT system to solve the problem. What is the value of λ^* at the solution(s)?

(d) Solve the problem by substituting $x_1(t) = \cos t$ and $x_2(t) = \sin(t)$ and using mild trigonometric knowledge. Confirm the answer is the same as in part (c).