
Math 661 Optimization (Bueler) October 26, 2016

Assignment #6
Due Monday 7 November at the start of class

Please read sections 5.1, 5.2, and 6.1 of Chapter 3 in the textbook (Nocedal &
Wright). Do the following Exercises and Problems.

Exercise 5.1. (Hints and comments. MATLAB/OCTAVE code lcg.m, posted online
at

bueler.github.io/M661F16/matlab/lcg.m

already implements Algorithm 5.2. Please use it; there is no need to write your
own. Also, Hilbert matrices are already built-in in MATLAB/OCTAVE: hilb(5)
generates the n = 5 case. Please also report cond(A) for each n = 5, 8, 12, 20.
Because these condition numbers are large, no method will generate accurate in-
verses; confirm this by comparing the result x of lcg.m to the result x̃ from A\b.)

Exercise 5.2.

Exercise 6.3. (Hint. The only way to do this is inductively. Assume Hk = B−1k .
Then show Hk+1Bk+1 = I .)

Problem P16. As noted above, lcg.m, posted online, implements Algorithm
5.2.

(a) Count all the floating-point operations inside the for loop, assuming that
A ∈ Rn×n is a dense matrix.

(b) Now assume that the for loop is executed K = n times. Which is faster, the
Cholesky (1

3
n3 +O(n2) operations) or lcg.m?

(c) Writing K as a fraction of n (i.e. K = an with 0 ≤ a ≤ 1), what number
of iterations K are needed so that, for large n, the work of Cholesky and lcg.m
are the same? (Comment. If A is sparse then one must redo all this calculation using a
reduced cost for the matrix-vector product Apk.)

http://bueler.github.io/M661F16/matlab/lcg.m


2

Problem P17. Reproduce something like the “clustered eigenvalues” result in
Figure 5.4 as follows, using lcg.m:

i) With n = 30, generate an n × n diagonal, SPD matrix D with five large
eigenvalues, say 100, 110, 140, 200, 400 for concreteness, and the remaining
n− 5 eigenvalues equally-distributed in the closed interval [0.95, 1.05].

ii) Generate a random orthogonal 1 matrix Q by the recipe
[Q,R] = qr(randn(n,n));

and then discarding R.
iii) Generate A = Q>DQ. Confirm that the dense matrix A is, to a high degree

of accuracy, SPD.
iv) Let x∗ = [1, 1, . . . , 1]> ∈ Rn. Compute b = Ax∗. Observe that we now know

that x∗ is the exact solution to the linear system Ax = b.
v) Using the xlist output from lcg.m, generate a graph like Figure 5.4, but

better-looking by using semilogy.

Problem P18. My “good” (not naive) implementation of BFGS is online at

bueler.github.io/M661F16/matlab/bfgsbt.m

It implements Algorithm 6.1 and uses back-tracking.
It writes (6.17) as several steps, namely

zk = rhok * sk;
Hk = Hk - (Hk * yk) * zk’;
Hk = Hk - zk * (yk’ * Hk);
Hk = Hk + zk * sk’;

Explain why this form is correct. That is, explain why this sequence of four lines
generates Hk+1 from formula (6.17), assuming that sk, yk, Hk, ρk have previously
been calculated correctly.

(Comment. It is possible to get this wrong and write a wildly-inefficient O(n3) version. In fact, the version in
scipy.optimize is exactly that. See function fmin_bfgs() at

github.com/scipy/scipy/blob/master/scipy/optimize/optimize.py.
Fixing it the right way, and documenting/testing your code to the usual good Scipy standards, would be a
contribution to humanity.)

1A square matrix Q is orthogonal if its columns form an orthonormal basis. Equivalently,
if Q>Q = I . You may confirm that the Q you generate is orthogonal by computing
norm(Q’*Q-eye(n,n)) and seeing that it is small.

http://bueler.github.io/M661F16/matlab/bfgsbt.m
https://github.com/scipy/scipy/blob/master/scipy/optimize/optimize.py

