
Math 661 Optimization (Bueler) October 12, 2016

Assignment #5
Due Friday 21 October at the start of class

Please read and understood as much as you can of Chapter 3 in the textbook (Nocedal
& Wright). Read sections 5.1 and 6.1 because it will help us get the context of current
material. Do the following Problems.

Problem P10. Show that if formula (2.19) is used then (2.17) holds. (See page 24.)

Problem P11. Show formula (3.27) in the text (page 43). That is, suppose that Q
is symmetric positive definite, the weighted norm is ‖x‖Q = (x>Qx)1/2, the objective
function is f(x) = 1

2
x>Qx− b>x, and x∗ denotes the unique minimizer of f . Show that

1

2
‖x− x∗‖2Q = f(x)− f(x∗).

Problem P12. (a) The Sherman-Morrison-Woodbury formula is (A.27) on page
612. Ignoring how they thought it up in the first place, show that it is true. That is,
assume A ∈ Rn×n is invertible. Let a, b ∈ Rn and define a rank-one update Ã = A+ab>.
Show that if Ã is invertible then its inverse is given by

(1) Ã−1 = A−1 − A−1ab>A−1

1 + b>A−1a
.

(Hint: You need only show that the given formula is the inverse. We assume an inverse
exists, and we know—this is in linear algebra—that there is at most one inverse.)

(b) As a special case, show that if I − uv> is invertible then
(
I − uv>

)−1
= I + ruv>

where r = 1/(1−v>u). Also describe how to determine if I−uv> is invertible by doing
an initial computation with u and v.

(c) Write a short and efficient pseudocode, or running MATLAB code, that imple-
ments the Sherman-Morrison-Woodbury formula (1) in form “B = SMW(Ainv,a,b)”,
where the output B is the matrix Ã−1. (Assume A−1 = Ainv is already available.) How
many floating point operations are needed? (Hint: Do matrix-vector products first.
Store temporary quantities as needed. Explain why your operation count is minimal.)

Problem P13. Suppose u1, . . . , uk ∈ Rn are orthonormal, so that u>i uj = 0 if i 6= j

and u>i ui = ‖ui‖2 = 1. (Note that this implies k ≤ n; why?) Let c1, . . . , ck ∈ R. Define a
matrix A ∈ Rn as a sum of outer products:

A = c1u1u
>
1 + · · ·+ ckuku

>
k .

Compute the rank and eigenvalues of A, being careful to consider any degenerate
cases. Is A symmetric? Under what conditions is A positive definite? (As usual, please
explain why your answers are correct.)



2

Problem P14. (This problem regards material on pages 46–47. We are looking at the “sur-
prising (and delightful) result” stated near the top of page 47.) Assume f : Rn → R is
twice continuously-differentiable, pk are from the usual quasi-Newton formula (3.34),
and xk → x∗ where ∇f(x∗) = 0. (I.e. assume that your quasi-Newton method converged.)
Under these assumptions, show that (3.35) is equivalent to (3.36).

Problem P15. (In determining pk in Newton and quasi-Newton algorithms we solve a sym-
metric positive definite (SPD) linear system Bkpk = −∇f(xk). The ability to identify and solve
SPD linear systems, as sketched in this problem, is already built-in to MATLAB/OCTAVE’s
backslash operation. Therefore the codes you write here are not tools you should use later!
Instead they explain in part how linear solver “packages” work, which is helpful knowledge.)

(a) The Cholesky factorization is a modified form of the familiar Gauss elimination
process (i.e. A = LU ), but in an efficient and stable form suitable for SPD matrices, and
yielding A = LL>. It is shown on page 608 of Nocedal & Wright as Algorithm A.2.

Implement Cholesky factorization as cholesky.m with form/signature
[L,ifail] = cholesky(A)

Note that the algorithm computes Lii =
√
Aii and then later it divides by this number.

Thus, if Aii ≤ 0 at some stage then the algorithm should stop and report failure. The
suggested form is designed to support this behavior. Namely, if A is indeed SPD then
cholesky should succeed and return L as the first output and ifail = −1 as the
second output. Otherwise, if Aii ≤ 0 at some stage, it should return the index i ≥ 1 for
which the algorithm has failed, and the incomplete L computed so far. Then one can
tell if the algorithm has succeeded by testing “ifail < 0”.

Test your program by applying it to these two 4× 4 matrices:

A =


4 1 −1 1

1 3 −2 −1
−1 −2 3 −1
1 −1 −1 2

 , B =


4 −1 −1 1

−1 3 −2 1

−1 −2 3 −1
1 1 −1 2


Which of these matrices is SPD? For the SPD matrix, check that the error, namely the
norm of the difference between LL> and the matrix, is indeed very small. Does the
built-in command chol produce exactly the same L, or very close?

(b) Now write a code called spdsolve.m with form
x = spdsolve(A,b)

This code solves Ax = b if A is SPD. It calls cholesky.m to get L so that LL> =

A and then it solves the two systems Ly = b and L>x = y. The latter two sys-
tems can be solved by MATLAB/OCTAVE’s backslash, which will automatically do the
forward/back-substitution on these triangular systems. Your code will also determine
if A is SPD. Your code will do at most 1

3
n3 +O(n2) floating point operations.

Make sure that the checks you make for being SPD are from code you write, not
other expensive steps. The main point here is that running Cholesky and seeing if it fails
is the fastest known way to determine the non-obvious answer to “is my symmetric
matrix with positive diagonal actually SPD?”


