Assignment #4

Due Monday 10 October at the start of class

Please read *everything* in Chapter 3 in the textbook (Nocedal & Wright). Do the following Exercises and Problems.

In fact the homework and Midterm Exam¹ problems will *not* require you to know the following specific material:

- strong Wolfe conditions (equations (3.7) page 34)
- Goldstein conditions (page 36)
- "line search algorithm for the Wolfe conditions" (pages 60–62)

Exercise 3.2

Exercise 3.3

Exercise 3.6

Exercise 3.13

Problem P7. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Show that if $x \in \mathbb{R}^n$ then

 $x^{\top}Ax \ge \lambda_n x^{\top}x.$

(*Hint*. You may use the fact that, because *A* is symmetric, any vector can be expanded in the eigenvectors of *A*—i.e. the eigenvectors form a basis. You may use the fact that, because *A* is symmetric, eigenvectors for distinct eigenvalues are orthogonal.)

¹Happens on October 24.

Problem P8. (*This problem replaces and clarifies Exercise 3.5.*)

In this problem, ||A|| denotes the *matrix* 2-*norm*.² It is defined and discussed in Appendix A.1—see particularly formulas (A.7) and (A.8b)—but this problem restates the definition and basic properties. In this problem we use the Euclidean norm (2-norm) for vectors, so that if $x \in \mathbb{R}^n$ then $||x|| = \sqrt{x^\top x} = (\sum_i x_i^2)^{1/2}$.

Suppose $A \in \mathbb{R}^{n \times n}$ is a square matrix. We define

$$||A|| = \max_{\substack{x \in \mathbb{R}^n \\ x \neq 0}} \frac{||Ax||}{||x||}.$$

It is *not* trivial to compute ||A||, but it is always true that

$$||A|| = ($$
largest eigenvalue of $A^{\top}A)^{1/2}$.

(Because $A^{\top}A$ is positive semi-definite, its eigenvalues are nonnegative.) If also A is symmetric then

$$||A|| = \max_{\substack{\lambda \text{ is an} \\ \text{ eigenvalue of } A}} |\lambda|.$$

If *A* itself is symmetric and positive semi-definite then $||A|| = \max \lambda$. Now for the exercise itself.

- (a) Show that if $A \in \mathbb{R}^{n \times n}$ is any matrix then $||Ax|| \le ||A|| ||x||$ for all $x \in \mathbb{R}^n$.
- **(b)** For an invertible³ matrix A, let

$$\kappa(A) = \operatorname{cond}(A) = ||A|| ||A^{-1}||.$$

Show that if *A* is symmetric and positive definite with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$ then

$$\kappa(A) = \frac{\lambda_1}{\lambda_n}$$

Give a geometric interpretation to this ratio.

(c) Suppose we do a quasi-Newton step, namely $p_k = -B_k^{-1} \nabla f(x_k)$, for some B_k which is symmetric and positive-definite. As in (3.12), define

$$\cos \theta_k = \frac{-\nabla f(x_k)^\top p_k}{\|\nabla f(x_k)\| \|p_k\|}$$

Show that

$$\cos \theta_k \ge \frac{1}{\kappa(B_k)}$$

(*Hint*. This is the main part of the problem. You will use **P7** and parts (a) and (b).)

(d) Show (3.19) and (3.20).

²Likewise true everywhere in the textbook unless otherwise stated.

³By tradition one defines $\kappa(A) = +\infty$ if A is not invertible.

Problem P9. (*This problem replaces, clarifies, and simplifies Exercise* 3.13.)

The BFGS algorithm is described in section 2.2 on page 24. See especially formulas (2.17) and (2.19). The algorithm:

chose x_0 and B_0 B_0 should be positive-definite for $k = 0, 1, 2, \ldots$ $p_k = -B_k^{-1} \nabla f(x_k)$ usual quasi-Newton search vector (3.34) $\alpha_k = (\text{result from a line search})$ the step itself $s_k = \alpha_k p_k$ $x_{k+1} = x_k + s_k$ take step **if** $\|\nabla f(x_{k+1})\| \leq \text{tol}$ absolute tolerance criterion ... minimal break end $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$ *right side of this goal:* $\nabla^2 f(x_{k+1}) s_k \approx y_k$ efficient to get this vector first $z_k = B_k s_k$ $B_{k+1} = B_k - \frac{z_k z_k^\top}{s_k^\top z_k} + \frac{y_k y_k^\top}{y_k^\top s_k}$ so that "secant equation" $B_{k+1}s_k = y_k$ is true

end

Implement this algorithm, using $B_0 = I$ and the usual back-tracking line search.⁴ Apply to the Rosenbrock function⁵ using the two initial iterates x_0 stated in Exercise 3.1. Compare the performance to that of Newton's method; refer to the Assignment #3 solutions for results from Newton.

⁴Online at bueler.github.io/M661F16/matlab/bt.m.

⁵Also online at bueler.github.io/M661F16/matlab/rosenbrock.m.