Finite-dimensional spectral theory

part II: understanding the spectrum (and singular values)

Ed Bueler

MATH 617 Functional Analysis

Spring 2020

Outline

introduction

- 2 functional calculus
- 3 resolvents
- 4 orthogonal projectors
- 5 singular value decomposition
- 6 conclusion

what happened in part I

- see part | first: bueler.github.io/M617S20/slides1.pdf
- *definition.* for a square matrix $A \in \mathbb{C}^{n \times n}$, the *spectrum* is the set

$$\sigma(\mathbf{A}) = \left\{ \lambda \in \mathbb{C} \mid \mathbf{A}\mathbf{v} = \lambda \mathbf{v} \text{ for some } \mathbf{v} \neq \mathbf{0} \right\}$$

we proved:

 $A = QTQ^*$ Schur decomposition for any $A \in \mathbb{C}^{n \times n}$

 $A = Q \wedge Q^*$ spectral theorem for normal ($AA^* = A^*A$) matrices

where Q is unitary, T is upper-triangular, and Λ is diagonal

both decompositions "reveal" the spectrum:

 $\sigma(A) = \{ \text{diagonal entries of } T \text{ or } \Lambda \}$

 spectral theorem for hermitian matrices is sometimes called the *principal* axis decomposition for quadratic forms

goal for MATH 617

goal

extend the spectral theorem to ∞ -dimensions

- only possible for linear operators on Hilbert spaces H
 - o inner product needed for adjoints and unitaries
 - unitary maps needed because they preserve vector space and metric and adjoint structures
- textbook (Muscat) extends to compact normal operators on H
 - o the spectrum is eigenvalues (almost exclusively)
- recommended text (B. Hall, *Quantum Theory for Mathematicians*) extends further to bounded (continuous) normal operators on *H*
 - spectrum is not only eigenvalues
 - o statement of theorem uses projector-valued measures
- Hall also extends to unbounded normal operators on H
 - but we won't get there ...
- the Schur decomposition has no straightforward extension

back to matrices!

Definition

```
U \in \mathbb{C}^{n \times n} is unitary if U^* U = I
```

Lemma

Consider \mathbb{C}^n as a inner product space with $\langle v, w \rangle = v^* w$ and $||v||_2 = \sqrt{\langle v, v \rangle}$. Suppose U is linear map on \mathbb{C}^n . The following are equivalent:

- U is unitary
- expressed in the standard basis, the columns of U are ON basis of \mathbb{C}^n
- $\langle Uv, Uw \rangle = \langle v, w \rangle$ for all $v \in \mathbb{C}^n$
- $\|Uv\|_2 = \|v\|_2$ for all $v \in \mathbb{C}^n$
- U is a metric-space isometry

Definition

 $A \in \mathbb{C}^{n \times n}$ is normal if $A^*A = AA^*$

• includes: hermitian ($A^* = A$), unitary, skew-hermitian ($A^* = -A$)

Lemma

Consider \mathbb{C}^n as a inner product space with $\langle v, w \rangle = v^* w$ and $||v||_2 = \sqrt{\langle v, v \rangle}$. Suppose A is linear map on \mathbb{C}^n . The following are equivalent:

- A is normal
- ||Ax||₂ = ||A^{*}x||₂ for all x
- exists an ON basis of eigenvectors of A
- exists Q unitary and \wedge diagonal so that $A = Q \wedge Q^*$ (spectral theorem)

Outline

introduction

functional calculus

- 3 resolvents
- 4 orthogonal projectors
- 5 singular value decomposition
- conclusion

power series of matrices

- suppose A is diagonalizable: $A = S \wedge S^{-1}$
 - where S is invertible and Λ is diagonal
 - diagonal entries of Λ are eigenvalues of A
 - if A is normal (e.g. hermitian) then choose S = Q unitary so $S^{-1} = Q^*$
- powers of *A*:

$$A^{k} = S \wedge S^{-1} S \wedge S^{-1} S \wedge S^{-1} \cdots S \wedge S^{-1} = S \wedge^{k} S^{-1}$$

• if f(z) is a power series then we can create f(A):

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \implies f(A) = \sum_{n=0}^{\infty} c_n A^n = S\left(\sum_{n=0}^{\infty} c_n \Lambda^n\right) S^{-1}$$
$$= S\begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{bmatrix} S^{-1}$$

• for example: $e^{tA} = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n = S\begin{bmatrix} e^{t\lambda_1} & & \\ & \ddots & \\ & & e^{t\lambda_n} \end{bmatrix} S^{-1}$

what does "functional calculus" mean?

- given A ∈ C^{n×n}, a (finite-dimensional) *functional calculus* is algebraic-structure-preserving map from a set of functions f(z) defined on C to matrices f(A) ∈ C^{n×n}
- example: for f(z) analytic,

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \qquad \Longrightarrow \qquad f(A) = \sum_{n=0}^{\infty} c_n (A - z_0 I)^n$$
$$= S \begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{bmatrix} S^{-1}$$

- but . . .
 - does the matrix power series $f(A) = \sum_{n=0}^{\infty} c_n (A z_0 I)^n$ converge? reasonable question
 - does f(z) have to be analytic anyway?

no

norms of powers

for any induced norm:

$$\|\boldsymbol{A}^k\| \le \|\boldsymbol{A}\|^k$$

if A is diagonalizable then in any induced norm

$$\|\mathcal{A}^k\| = \|\mathcal{S}\Lambda^k\mathcal{S}^{-1}\| \leq \kappa(\mathcal{S})\max_{\lambda\in\sigma(\mathcal{A})}|\lambda|^k = \kappa(\mathcal{S})
ho(\mathcal{A})^k$$

- $\kappa(S) = ||S|| ||S^{-1}||$ is the *condition number* of *S*
- $\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|$ is the *spectral radius* of A

$$\circ
ho(A) \leq \|A\|$$

• *corollary.* if A is diagonalizable and $\rho(A) < 1$ then $A^k \to 0$ as $k \to \infty$

- actually this holds for all square A... use the Schur or Jordan-canonical-form decompositions
- if A is normal then, because unitaries preserve 2-norm,

$$\|\boldsymbol{A}^k\|_2 = \|\boldsymbol{Q}\Lambda^k\boldsymbol{Q}^*\|_2 = \max_{\lambda\in\sigma(\boldsymbol{A})}|\lambda|^k =
ho(\boldsymbol{A})^k$$

- thus $||A^k||_2 = ||A||_2^k$
- note $\kappa_2(Q) = 1$ for a unitary matrix Q

convergence when f(z) is analytic

does it converge?

$$f(A) \stackrel{*}{=} \sum_{n=0}^{\infty} c_n (A - z_0 I)^n$$

Lemma

Suppose $f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$ has radius of convergence R > 0. If $||A - z_0I|| < R$ in some induced norm then sum * converges in that norm.

• if A is normal then $A = Q \wedge Q^*$ so

$$\|\boldsymbol{A} - \boldsymbol{z}_0 \boldsymbol{I}\|_2 = \max_{\lambda \in \sigma(\boldsymbol{A})} |\lambda - \boldsymbol{z}_0| =
ho(\boldsymbol{A} - \boldsymbol{z}_0 \boldsymbol{I})$$

• in general $\rho(A - z_0 I) \le ||A - z_0 I||$ can be strict inequality

compare two ways of defining f(A):

$$f(A) \stackrel{(1)}{=} \sum_{n=0}^{\infty} c_n (A - z_0 I)^n \quad \text{and} \quad f(A) \stackrel{(2)}{=} S \begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{bmatrix} S^{-1}$$

- for (1) *f* needs to be analytic and have sufficiently-large radius of convergence relative to norm ||*A* − *z*₀*I*||
- for formula (2), A needs to be diagonalizable, but f(z) does not need to be analytic ... it only needs to be defined on σ(A)

the functional calculus for normal matrices

Theorem

If $A \in \mathbb{C}^{n \times n}$ is normal, if $\sigma(A) \subseteq \Omega \subseteq \mathbb{C}$, and if $f : \Omega \to \mathbb{C}$, then there is a unique matrix $f(A) \in \mathbb{C}^n$ so that:

- f(A) is normal
- If (A) commutes with A
- if $Av = \lambda v$ then $f(A)v = f(\lambda)v$

$$\| f(A) \|_{2} = \max_{\lambda \in \sigma(A)} |f(\lambda)|$$

proof. By the spectral theorem there is a unitary matrix Q and a diagonal matrix Λ so that $A = Q \Lambda A^*$, with columns of Q which are eigenvectors of A and all eigenvalues of A listed on the diagonal of Λ . Define

$$f(A) = Q \begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{bmatrix} Q^*.$$

It has the stated properties. It is a unique because its action on a basis (eigenvectors of A) is determined by property 3.

Ed Bueler (MATH 617)

Finite-dimensional spectral theory II

the meaning of the functional calculus

- if A is normal then you can apply any function f(z) to it, giving f(A), as though A is "just like a complex number"
 - f merely has to be defined¹ on the finite set $\sigma(A)$
 - the matrix 2-norm behaves well: $\|f(A)\|_2 = \max_{\lambda \in \sigma(A)} |f(\lambda)|$
 - eigendecomposition is therefore powerful when A is normal!
- if A is diagonalizable then f(A) can be *defined* the same:

$$f(A) = S \begin{bmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{bmatrix} S^{-1}$$

but surprising behavior is possible: $||f(A)|| \gg \max_{\lambda \in \sigma(A)} |f(\lambda)|$

• if *A* is defective then what? revert to using power series just to define *f*(*A*)?

¹In ∞ -dimensions *f* needs some regularity. Thus there are separate wikipedia pages on *holomorphic functional calculus, continuous functional calculus, and borel functional calculus.*

functional calculus applications

Suppose A is hermitian and we want to build a unitary matrix from it
 A is normal and σ(A) ⊂ ℝ

solution 1. $f(z) = e^{iz}$ maps \mathbb{R} to the unit circle so

$$U = e^{iA}$$
 is unitary

solution 2. $f(z) = \frac{z+i}{z-i}$ maps \mathbb{R} to the unit circle so

$$U = (A + iI)(A - iI)^{-1}$$
 is unitary

Suppose U is unitary and we want to build a hermitian matrix from it
 U is normal and σ(U) ⊂ S¹ = {z ∈ C : |z| = 1}

solution. f(z) = Log(z) maps the unit circle S^1 to the real line, so

$$A = \frac{1}{i} \operatorname{Log}(U) = -i \operatorname{Log}(U)$$
 is hermitian

functional calculus applications: linear ODEs

③ given $A ∈ \mathbb{C}^{n × n}$ normal, and given $y_0 ∈ \mathbb{C}$, solve

$$\frac{dy}{dt} = Ay, \qquad y(t_0) = y_0$$

for $y(t) \in \mathbb{C}^n$ on $t \in [t_0, t_f]$

solution. $y(t) = e^{tz}$ solves dy/dt = zy so, using the functional calculus with $f(z) = e^{(t-t_0)z}$,

$$y(t) = e^{(t-t_0)A}y_0$$

= expm((t-t0)*A)*y0,
$$y(t)\|_2 = e^{(t-t_0)\omega(A)}\|y_0\|_2$$

where $\omega(A) = \max_{\lambda \in \sigma(A)} \operatorname{Re} \lambda$

- if A is diagonalizable A = SΛS⁻¹ then the same applies ... except the norm of the solution includes κ(S)
- if A is defective then the general solution of the ODE system is *not* exponential
- ${f 0}~\infty$ -dimensional version: Schrödinger's equation in quantum mechanics

Outline

introduction

functional calculus

resolvents

- 4 orthogonal projectors
- 5 singular value decomposition
- conclusion

resolvents

Definition

given $A \in \mathbb{C}^{n \times n}$ then $\mathbb{C} \setminus \sigma(A)$ is the *resolvent set*, and if $z \in \mathbb{C} \setminus \sigma(A)$ then

$$R_z(A) = (A - zI)^{-1}$$

is the resolvent matrix

- recall: $z \in \sigma(A)$ if and only if A zI is not invertible
- the resolvent set $\mathbb{C} \setminus \sigma(A)$ is open
- $R_0(A) = A^{-1}$ if $0 \notin \sigma(A)$
- $R_z(A)$ "resolves" the equation Av zv = b

resolvent norms

• if $A = S \wedge S^{-1}$ is diagonalizable and $z \in \mathbb{C} \setminus \sigma(A)$ then

$$R_{z}(A) = (S \wedge S^{-1} - z S I S^{-1})^{-1} = S (\Lambda - z I)^{-1} S^{-1}$$

so in any induced norm

$$\|\boldsymbol{R}_{\boldsymbol{z}}(\boldsymbol{A})\| \leq \|\boldsymbol{S}\| \|\boldsymbol{S}^{-1}\| \| \left(\boldsymbol{\Lambda} - \boldsymbol{z}\boldsymbol{I}\right)^{-1} \| = \kappa(\boldsymbol{S}) \max_{\boldsymbol{\lambda} \in \sigma(\boldsymbol{A})} |\boldsymbol{\lambda} - \boldsymbol{z}|^{-1}$$

• if A is normal then we can choose S = Q unitary with $\kappa_2(Q) = 1$ so

$$\|\boldsymbol{R}_{\boldsymbol{z}}(\boldsymbol{A})\|_{2} = \max_{\boldsymbol{\lambda} \in \sigma(\boldsymbol{A})} |\boldsymbol{\lambda} - \boldsymbol{z}|^{-1}$$

• one may plot $g(z) = ||R_z(A)||$

resolvent norms illustrated

• contours of $z \mapsto ||R_z(A)||_2 = ||(A - zI)^{-1}||_2$ is best spectral picture?

- >> resolveshow(A)
- >> [A,B] = gennormal(5); % A,B have same eigs; A normal but B not % normal case (LEFT) >> resolveshow(B) % nonnormal case (RIGHT)

- last slide already proved contours would be round for normal A
- $\sigma_{\epsilon}(A) = \{z \in \mathbb{C} : ||(A zI)^{-1}||_2 \ge \epsilon^{-1}\}$ is the ϵ -pseudospectrum of A

nonnormal matrices, a warning

- facts and definitions:
 - $\circ ||\mathbf{A}^{k}|| \leq ||\mathbf{A}||^{k}$ in any induced norm
 - $\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|$
 - if A is normal then $||A^k||_2 = (||A||_2)^k = \rho(A)^k$
 - if $\rho(A) < 1$ then $A^k \to 0$ as $k \to \infty$

proof?

- but if A is not normal and $\rho(A) < 1$ then $||A^k||_2$ can be big for a while
 - e.g. random 100 \times 100 matrices *A*,*B* with $\rho(A) = \rho(B) < 1$

```
>> max(abs(eig(A)))
ans = 0.90909
>> max(abs(eig(B)))
ans = 0.90909
```


Definition

given $A \in \mathbb{C}^{n \times n}$, the *spectrum of A* is the set

 $\sigma(\mathbf{A}) = \{\lambda \in \mathbb{C} \mid \mathbf{A} - \lambda \mathbf{I} \text{ does not have a bounded inverse} \}$

• in \mathbb{C}^n this is the same as our original definition:

$$\sigma(\mathbf{A}) = \left\{ \lambda \in \mathbb{C} \mid \mathbf{A}\mathbf{v} = \lambda \mathbf{v} \text{ for some } \mathbf{v} \neq \mathbf{0} \right\}$$

- in ∞ -dimensions it is different because there exist one-to-one bounded operators which do not have bounded inverses
 - *example 1*: the one-to-one right-shift operator R on ℓ^1 has spectrum² $\sigma(R) = \{z \in \mathbb{C} : |z| \le 1\}$, but it has no eigenvalues
 - *example 2*: the hermitian multiplication operator (Mf)(x) = xf(x) on $L^2[0, 1]$ has no eigenvalues but $\sigma(M) = [0, 1]$

²we will prove this by showing that $\sigma(L) = \{z \in \mathbb{C} : |z| \le 1\}$ for the left-shift operator $L = R^*$, based on eigenvalues, and that $\sigma(A^*) = \sigma(A)$ in a Banach algebra

Outline

introduction

- 2 functional calculus
- 3 resolvents

orthogonal projectors

- singular value decomposition
- conclusion

orthogonal projectors

Definition

 $P \in \mathbb{C}^{n \times n}$ is an orthogonal projector if $P^2 = P$ and $P^* = P$

• as for any projector $(P^2 = P)$:

 $\ker P = \operatorname{im}(I - P), \quad \operatorname{im} P = \ker(I - P), \quad \mathbb{C}^n = \ker P \oplus \operatorname{im} P, \quad \sigma(P) \subset \{0, 1\}$

• but for orthogonal projectors:

$$\ker P \perp \operatorname{im} P$$

• proof. if $u \in \ker P$ and $v = Pz \in \operatorname{im} P$ then $u^*v = u^*(Pz) = (Pu)^*z = 0$

orthogonal projectors are hermitian, thus normal

examples:

$$0, \quad I, \quad P = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix}$$

constructing orthogonal projectors from ON vectors

 since P is hermitian and σ(P) ⊂ {0, 1}, the spectral theorem plus re-ordering of the columns of Q gives

$$P=Q \wedge Q^* = Q egin{bmatrix} \hat{I} & \ & 0 \end{bmatrix} Q^* = \hat{Q} \hat{Q}^*$$

where \hat{l} is a $k \times k$ identity and \hat{Q} is a $n \times k$ matrix of columns of Q

Lemma

 $P \in \mathbb{C}^{n \times n}$ is an orthogonal projector if and only if there exist ON vectors q_1, \ldots, q_k , for $0 \le k \le n$, so that

$$P = \hat{Q}\hat{Q}^*$$
 and $\hat{Q} = \begin{bmatrix} q_1 & q_2 & \dots & q_k \end{bmatrix} \in \mathbb{C}^{n \times k}$

- hard direction of proof is above; easy direction: $(\hat{Q}\hat{Q}^*)^2 = \dots$
- note $\hat{Q}^* \hat{Q} = \hat{I}$
- rank 1 case: $P = qq^* = (aa^*)/(a^*a)$
- construction from full-column-rank A: $P = A(A^*A)^{-1}A^*$

spectral theorem = decomposition into projectors

• consider this calculation for A normal:

$$A = Q \wedge Q^* = Q \left(\begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \right) Q^*$$
$$= Q \left(\begin{bmatrix} \lambda_1 & \\ & \end{bmatrix} + \dots + \begin{bmatrix} & \\ & & \lambda_n \end{bmatrix} \right) Q^* = q_1 \lambda_1 q_1^* + \dots + q_n \lambda_n q_n^*$$
$$= \sum_{j=1}^n \lambda_j q_j q_j^*$$

- A decomposes into a linear combination of rank-one orthogonal projectors
- thus normal matrices act on vectors like this:

$$A\mathbf{v} = \sum_{j=1}^{n} \lambda_j q_j q_j^* \mathbf{v} = \sum_{j=1}^{n} \lambda_j \langle q_j, \mathbf{v} \rangle q_j$$

o this formula appears in most applications of normal operators

resolution of the identity

• if A is normal then
$$A = \sum_{i=1}^{n} \lambda_i q_i q_i^*$$
 where $\{q_i\}$ are ON

• if A is normal then we can use its eigenvectors to decompose the identity:

$$I = QQ^* = \sum_{i=1}^n q_i q_i^*$$

- called a resolution of the identity
- application: Parseval's identity for any ON basis

$$\|v\|_{2}^{2} = v^{*}v = v^{*}lv = \sum_{i=1}^{n} v^{*}q_{i}q_{i}^{*}v = \sum_{i=1}^{n} |\langle q_{i}, v \rangle|^{2}$$

spectra of big random matrices

• *claim (circular law)*. if $A \in \mathbb{R}^{n \times n}$ has entries which are normally-distributed random variables with mean zero and variance n^{-1} , so $a_{ij} \sim N(0, n^{-1})$, then as $n \to \infty$ the spectrum of A fills the unit disc

but these matrices are not normal

spectra of big random normal matrices

- but randn (n, n) is not normal (i.e. normal with probablility zero)
- construct a random *normal* matrix with the same spectrum:

```
function [A, B] = gennormal(n);
% GENNORMAL Generate a random n x n complex matrix A which is normal
% (but not hermitian). The entries have normal distributions. The
% eigenvalues will roughly cover the unit disc when n is large. Also
% returns B, a nonnormal matrix with the same eigenvalues as A.
% Example:
% >> [A,B] = gennormal(100);
% >> lam = eig(A);
% >> plot(real(lam),imag(lam),'o'), grid on % same picture for B
% >> norm(A'*A - A*A') % very small
% >> norm(B'*B - B*B') % not small
% See also GENHERM, PROJMEASURE.
B = randn(n, n) / sqrt(n);
                         % https://en.wikipedia.org/wiki/Circular law
                         2
                               says eigenvalues of B are asymptotically
                               uniformly distributed on unit disc
                         2
[X,D] = eig(B);
                         % D is diagonal and holds eigenvalues and
                               X holds (nonorthogonal) eigenvectors
                         8
[Q,R] = qr(X);
                         % O holds ON basis for C^n, built from applying
                               orthogonalization to columns of X
                        8
A = O * D * O';
                        % construct A to be normal but to have same
                         8
                              eigenvalues as B
```

spectral subsets correspond to orthogonal projectors

- I also wrote a code projmeasure.m which shows $\sigma(A)$ as a subset of \mathbb{C} and lets you select the eigenvalues for which you want eigenvectors
- demo 1:

```
% view selected eigenvectors
```

>> Oh

projector-valued measures (von Neumann)

- John von Neumann imagined these kind of spectral pictures in the 1920s
 before he invented electronic computers in the 1940s
- he proposed a *projector-valued measure* E_{λ} for each $A \in B(\mathbb{C}^n)$ normal
 - if $Z \subset \sigma(A) \subset \mathbb{C}$ then $P = E_{\lambda}(Z)$ is an orthogonal projector
 - im P = im $E_{\lambda}(Z)$ is span of eigenvectors for eigenvalues $\lambda \in Z$
- he built this to handle quantum mechanical operators rigorously
- (von Neumann's) spectral theorem. if A ∈ B(H) normal, for H a Hilbert space, then there exists a projector-valued measure E_λ so that

$${m A} = \int_{\sigma({m A})} \lambda \, {m d} {m E}_\lambda$$

• the most general functional calculus follows immediately:

$$f(A) = \int_{\sigma(A)} f(\lambda) \, dE_{\lambda}$$

- o f is merely measurable
- A could even be unbounded (i.e. not Lipschitz)

Outline

introduction

- 2 functional calculus
- 3 resolvents
- 4 orthogonal projectors
- 5 singular value decomposition
 - conclusion

why singular values?

- eigenvalues can be useful!
- but they are only defined for square matrices
 - in ∞ -dimensions: "spectrum is useful, but only for B(X), not B(X, Y)"
- ... and sometimes not so useful anyway
 - o only "safe" to use eigenvalues if eigenvectors are orthogonal (A normal)
 - diagonalization $A = S \wedge S^{-1}$ may tell us little about A when $\kappa(S) \gg 1$
 - square matrices can be defective anyway
- however, any $A \in \mathbb{C}^{m \times n}$ has singular values
 - o what do the eigenvalues say?

Behavior of powers A^k or functions f(A) like e^{At} .

o what do the singular values say?

Invertibility of A: rank, nullity

Geometric action of A: $||A||_2$, $||A^{-1}||_2$, condition number, ϵ -pseudospectrum

o so, what information do you want?

visualizing a matrix

Figure 4.1. SVD of a 2×2 matrix.

figure from Trefethen & Bau, Numerical Linear Algebra, SIAM Press 1997

A ∈ ℝ^{m×n} sends the unit sphere in ℝⁿ to a possibly-degenerate hyperellipsoid in ℝ^m

- o this is the fundamental way to visualize a linear operator!
- also true for $A \in \mathbb{C}^{m \times n} \dots$ but less visualizable
- the singular values of A define the geometry of the output hyperellipsoid

Theorem

if $A \in \mathbb{C}^{m \times n}$ then there exist $U \in \mathbb{C}^{m \times m}$ unitary, $V \in \mathbb{C}^{n \times n}$ unitary, and $\Sigma \in \mathbb{R}^{m \times n}$ diagonal, with nonnegative entries, so that

$$A = U \Sigma V^*$$

- singular value decomposition (SVD) of A
- diagonal entries σ_i of Σ are the singular values of A
 - note Σ is same shape as *A*, while *U*, *V* are always square
 - normalization $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{m,n\}}$ makes Σ unique
 - if $A \neq 0$ then $\sigma_1 > 0$
 - if A = 0 we take $\Sigma = 0$ and choose U, V as any unitaries
- action of $A = U\Sigma V^*$ on a vector:
 - multiplication by V^* finds coefficients of the vector in the columns of V
 - $\circ~$ multiplication by Σ stretches the vector along standard axes
 - multiplication by U rotates the vector to the output hyperellipsoid

singular value decomposition: examples

• example 1. if
$$A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$$
 then

$$A = \begin{bmatrix} -0.92388 & -0.38268 \\ -0.38268 & 0.92388 \end{bmatrix} \begin{bmatrix} 5.3983 \\ 0.92621 \end{bmatrix} \begin{bmatrix} -0.75545 & -0.6552 \\ -0.6552 & 0.75545 \end{bmatrix}^*$$
• $||A||_2 = 5.3983, ||A^{-1}||_2 = 1/0.92621$
• compare: $\sigma(A) = \{5, 1\}$
• example 2. if $B = \begin{bmatrix} 6 & 5 \\ 4 & 3 \\ 1 & 2 \end{bmatrix}$ then

$$B = \begin{bmatrix} -0.82264 & -0.05242 & -0.56614 \\ -0.52578 & -0.30878 & 0.79259 \\ -0.21636 & 0.94969 & 0.22646 \end{bmatrix} \begin{bmatrix} 9.49393 \\ 0.93025 \end{bmatrix} \begin{bmatrix} -0.76421 & -0.64497 \\ -0.64497 & 0.76421 \end{bmatrix}^*$$

- $||B||_2 = 9.49393$
- B is not invertible
- $\sigma(B)$ is not defined

singular value decomposition: proof

proof. Induct on *n*, the column size of *A*. If n = 1 then A = [a] where $a \in \mathbb{C}^m$. Then

$$U = \begin{bmatrix} a \\ \|a\|_2 \end{bmatrix}, \quad \Sigma = [\|a\|_2], \quad V = [1]$$

is an SVD for A

For n > 1 let $v_1 \in \mathbb{C}^n$ be a unit vector which maximizes the continuous function

 $f(x) = ||Ax||_2$

over the compact set $S^n = \{x \in \mathbb{C}^n : ||x||_2 = 1\}$. (We just used finite-dimensionality!) Then Av_1 is a vector in \mathbb{C}^m with length $\sigma_1 = \|Av_1\|_2 = \|A\|_2$. If $\sigma_1 = 0$ we are done because A is the zero matrix. (*Why*?) Otherwise $\sigma_1 > 0$ so let $u_1 = Av_1/\sigma_1$. Now we have $Av_1 = \sigma_1 u_1$.

Extend v_1 and u_1 to orthonormal bases of \mathbb{C}^n , \mathbb{C}^m , respectively, giving unitary matrices

$$\tilde{V} = \left[\begin{array}{c|c} v_1 & \tilde{v}_2 & \dots & \tilde{v}_n \end{array} \right], \qquad \tilde{U} = \left[\begin{array}{c|c} u_1 & \tilde{u}_2 & \dots & \tilde{u}_m \end{array} \right].$$

Now apply A to \tilde{V} .

$$A\tilde{V} = \left[\begin{array}{c|c} \sigma_1 u_1 & w_2 & \dots & w_n \end{array} \right].$$

Next apply \tilde{U}^* , and note that $\tilde{U}^* u_1 = e_1$:

$$\tilde{U}^* A \tilde{V} = \begin{bmatrix} \sigma_1 & z^* \\ \hline 0 & M \end{bmatrix}$$

Ed Bueler (MATH 617)

singular value decomposition: proof cont.

cont. We have

$$\tilde{U}^* A \tilde{V} = \begin{bmatrix} \sigma_1 & z^* \\ \hline 0 & M \end{bmatrix}$$

for $z \in \mathbb{C}^{n-1}$ and $M \in \mathbb{C}^{(m-1)\times(n-1)}$. Because \tilde{U}, \tilde{V} are unitary, the matrix norm is unchanged: $\|\tilde{U}^*A\tilde{V}\|_2 = \|A\|_2$.

In fact z = 0, for the following reason. Let $w \in \mathbb{C}^m$ be the vector $w = \begin{bmatrix} \sigma_1 \\ z \end{bmatrix}$. It is nonzero because $||w||_2 = (\sigma_1^2 + ||z||_2^2)^{1/2} \ge \sigma_1 > 0$. But

$$\left\| \begin{bmatrix} \sigma_1 & z^* \\ 0 & M \end{bmatrix} \begin{bmatrix} \sigma_1 \\ z \end{bmatrix} \right\|_2 = \left\| \begin{bmatrix} \sigma_1^2 + z^* z \\ M z \end{bmatrix} \right\|_2 \ge \sigma_1^2 + \|z\|_2^2 = (\sigma_1^2 + \|z\|_2^2)^{1/2} \|w\|_2.$$

That is, $\|\tilde{U}^*A\tilde{V}w\|_2 \ge (\sigma_1^2 + \|z\|_2^2)^{1/2}\|w\|_2$, so if $z \ne 0$ then $\|A\|_2 = \|\tilde{U}^*A\tilde{V}\|_2 > \sigma_1$, contradicting the definition of σ_1 .

Thus

$$\tilde{U}^* A \tilde{V} = \begin{bmatrix} \sigma_1 & 0 \\ 0 & M \end{bmatrix}$$

By the induction hypothesis there exist $\hat{U}, \hat{\Sigma}, \hat{V}$ so that $M = \hat{U}\hat{\Sigma}\hat{V}^*$. Since products of unitaries are unitary, we have an SVD of *A*:

$$A = \left(\tilde{U}\left[\begin{array}{c|c}1 & 0\\\hline 0 & \hat{U}\end{array}\right]\right)\left[\begin{array}{c|c}\sigma_1 & 0\\\hline 0 & \hat{\Sigma}\end{array}\right]\left(\tilde{V}\left[\begin{array}{c|c}1 & 0\\\hline 0 & \hat{V}\end{array}\right]\right)^* = U\Sigma V^* \quad \Box$$

singular value decomposition: facts

- $\|A\|_2 = \|\Sigma\|_2 = \sigma_1$
- *α* is a singular value of *A* if and only if *α*² is an eigenvalue of *A***A*
- the singular values of A are the same as those of A*
- for any $A \in \mathbb{C}^{m \times n}$,
 - rank(A) = k where $\sigma_k > 0$ and $\sigma_{k+1} = 0$
 - nullity(A) = q where q is number of zero singular values ($m \ge n$)
- if $A \in \mathbb{C}^{n \times n}$ is square then
 - $|\det(A)| = \prod_{j=1}^n \sigma_j$
 - if *A* is invertible then $||A^{-1}||_2 = 1/\sigma_n$
 - $\kappa_2(A) = \sigma_1/\sigma_n \in [1, \infty]$ is the eccentricity of the output hyperellipsoid
 - $\circ \ \sigma_n \leq \min_{\lambda \in \sigma(A)} |\lambda| \leq \max_{\lambda \in \sigma(A)} |\lambda| \leq \sigma_1$
- if A is square and normal then $\sigma_j = |\lambda_j|$ (with ordering of $\sigma(A)$)

Outline

introduction

- 2 functional calculus
- 3 resolvents
- 4 orthogonal projectors
- 5 singular value decomposition
- conclusion

please try reading the textbook backwards now

- go to the end of Chapter 15 "C* algebras" and read backwards:
 - o von Neumann's spectral theorem for bounded operators on Hilbert spaces
 - functional calculus for normal elements
 - singular value decomposition for compact operators between Hilbert spaces
 - spectral theorem for compact normal operators on a Hilbert space
 - definition of normal, unitary, and self-adjoint (hermitian) elements
 - definition of a C* algebra
- on the other hand, go to the beginning of Chapter 14 "Spectral theory" and read forward
- I hope that by the end of the semester it will make sense!