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what happened in part |

@ see part | first:  bueler.github.io/M617520/slidesl.pdf
@ definition. for a square matrix A € C"™", the spectrum is the set

o(A)={A e C|Av = \v for some v # 0}

@ we proved:

A= QTQ* Schur decomposition forany A c C™"
A= QAQ" spectral theorem for normal (AA* = A*A) matrices

where Q is unitary, T is upper-triangular, and A is diagonal
o both decompositions “reveal” the spectrum:

o(A) = {diagonal entries of T or A}

o spectral theorem for hermitian matrices is sometimes called the principal
axis decomposition for quadratic forms
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http://bueler.github.io/M617S20/slides1.pdf

goal for MATH 617

goal J

extend the spectral theorem to co-dimensions

@ only possible for linear operators on Hilbert spaces H

o inner product needed for adjoints and unitaries
o unitary maps needed because they preserve vector space and metric and
adjoint structures

@ textbook (Muscat) extends to compact normal operators on H
o the spectrum is eigenvalues (almost exclusively)

@ recommended text (B. Hall, Quantum Theory for Mathematicians)
extends further to bounded (continuous) normal operators on H

o spectrum is not only eigenvalues
o statement of theorem uses projector-valued measures

@ Hall also extends to unbounded normal operators on H
o but we won't get there ...

@ the Schur decomposition has no straightforward extension
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important class: unitary matrices

@ back to matrices!

Definition
U e C"™"is unitaryif U*U = |

Lemma
Consider C" as a inner product space with (v,w) = v*w and ||v|2 = \/{v, v).
Suppose U is linear map on C". The following are equivalent:

@ U is unitary

@ expressed in the standard basis, the columns of U are ON basis of C"

e (Uv,Uw) = (v,w) forallv € C"

@ |Uv|lz2 = ||v||2 forallv € C"

@ U is a metric-space isometry
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important class: normal matrices

Definition
A € C"™"is normal if A*A = AA* J

@ includes: hermitian (A* = A), unitary, skew-hermitian (A* = —A)

Lemma
Consider C" as a inner product space with (v,w) = v*w and ||v||2 = \/{v, v).
Suppose A is linear map on C". The following are equivalent:

@ Ais normal

@ ||Ax||2 = ||A*x||2 for all x

@ exists an ON basis of eigenvectors of A

@ exists Q unitary and \ diagonal so that A= QAQ* (spectral theorem)
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9 functional calculus
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power series of matrices

@ suppose A is diagonalizable: A= SAS™!
o where S is invertible and A is diagonal
o diagonal entries of A are eigenvalues of A
o if Ais normal (e.g. hermitian) then choose S = Q unitary so S™' = Q*

@ powers of A:
A = SAS'SAST'SAS™!...SAS™!T = SAKST

@ if f(z) is a power series then we can create f(A):

f(z) = i cnZ2" == f(A) = i A" =S <§: c,,A”> s’
n=0 n=0

n=0
f(M)
=S s
f(An)
POy
o for example: t=>" ;—’:A” =S s
n=0 et
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what does “functional calculus” mean?

@ given A € C™7", a (finite-dimensional) functional calculus is

algebraic-structure-preserving map from a set of functions f(z) defined
on C to matrices f(A) € C™"

@ example: for f(z) analytic,

oo

(2)=) c(z—2)" = (A= i cn(A—201)"
n=0 n=0
f(\1)
=S s

f(\n)
@ but...

o does the matrix power series f(A) = > ca(A— 20/)" converge?
reasonable question

o does f(z) have to be analytic anyway?
no
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norms of powers

@ for any induced norm:
A < A

@ if Ais diagonalizable then in any induced norm
|4 = [[SN*S™T|| < K(S) max A" = r(S)p(A)*
A€o (A)

o k(S) =||S]|||IS7"|| is the condition number of S
o p(A) = maxyeq(a) |A| is the spectral radius of A
o p(A) < ||All

@ corollary. if Ais diagonalizable and p(A) < 1 then Ak — 0 as k — oo

o actually this holds for all square A ... use the Schur or
Jordan-canonical-form decompositions

@ if Ais normal then, because unitaries preserve 2-norm,
Ak _ /\k * — A k — A k
14Kl = QN Q"[lo = max N = p(A)

o thus [|A“]l2 = || All3
o note k2(Q) = 1 for a unitary matrix Q
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convergence when f(z) is analytic

does it converge? f(A) =D ca(A—zl)"
n=0

Lemma

Suppose f(z) =Y cn(z — 20)" has radius of convergence R > 0. If

|A— zl|| < R in some induced norm then sum = converges in that norm.

o if Ais normal then A = QAQ* so
14~ 20lll2 = max |\~ 20| = p(A ~ 201)

o ingeneral p(A — z/) <||A— Zl|| can be strict inequality
Ed Bueler (MATH 617)
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defining f(z)

@ compare two ways of defining f(A):

- f(A1)
(ALY c(A-zl)"  and (A ZS s
n=0 f(An)
@ for (1) f needs to be analytic and have sufficiently-large radius of
convergence relative to norm ||A — zy/||

e for formula (2), A needs to be diagonalizable, but f(z) does not need to
be analytic ... it only needs to be defined on o(A)
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the functional calculus for normal matrices

Theorem

IfAe C™"jsnormal, ifo(A) CQ C C, andiff : Q — C, then there is a unique
matrix f(A) € C" so that:

@ f(A) is normal

Q@ f(A) commutes with A

Q ifAv = \v then f(A)v = f(\)v
Q [f(A)llz = maxrca(a) If(N)]

proof. By the spectral theorem there is a unitary matrix Q and a diagonal
matrix A so that A = QAA*, with columns of Q which are eigenvectors of A
and all eigenvalues of A listed on the diagonal of A. Define

f(A1)
f(A) = Q Q.

f(An)

It has the stated properties. It is a unique because its action on a basis
(eigenvectors of A) is determined by property 3.
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the meaning of the functional calculus

@ if Ais normal then you can apply any function f(z) to it, giving f(A), as
though A is “just like a complex number”

o f merely has to be defined' on the finite set o(A)
o the matrix 2-norm behaves well: ||f(A)||2 = max eco(a) |F(A)]
o eigendecomposition is therefore powerful when A is normal!

@ if Ais diagonalizable then f(A) can be defined the same:

f(A\)
f(A) =S s
f(An)

but surprising behavior is possible: ||f(A)|| > maxyeq(a) [f(N)]

o if Ais defective then what? revert to using power series just to define
f(A)?

In co-dimensions f needs some regularity. Thus there are separate wikipedia pages on
holomorphic functional calculus, continuous functional calculus, and borel functional calculus.
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https://en.wikipedia.org/wiki/Continuous_functional_calculus
https://en.wikipedia.org/wiki/Borel_functional_calculus

functional calculus applications

@ suppose A is hermitian and we want to build a unitary matrix from it
o Ais normal and o(A) C R

solution 1. f(z) = e maps R to the unit circle so
U=eée" isunitary

, zZ+i oo
solution 2. f(z) = Z—j, maps R to the unit circle so

U= (A+il)(A—il~" is unitary
@ suppose U is unitary and we want to build a hermitian matrix from it
o Uisnormaland o(U) c S'={z€ C : |z| =1}
solution. f(z) = Log(z) maps the unit circle S' to the real line, so

A= 17 Log(U) = —iLog(U) is hermitian
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functional calculus applications: linear ODEs

@ given A ¢ C™" normal, and given yy € C, solve

ay
at

for y(t) e C"on t € [ty, k]

= Ay, y(h) = Yo

solution. y(t) = e solves dy/dt = zy so, using the functional calculus
with f(z) = elt=0)2,

y(t) = el
= expm ( (t—t0) *A) »yO0,

ly(t)]l2 = e~y

where w(A) = maxycq(a) Re A

e if Ais diagonalizable A = SAS™" then the same applies . .. except the norm
of the solution includes (S)

o if Ais defective then the general solution of the ODE system is not
exponential

© oco-dimensional version: Schrodinger’s equation in guantum mechanics
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e resolvents

Ed Bueler (MATH 617) Finite-dimensional spectral theory Il Spring 2020 17/41



resolvents

Definition

given A € C™ " then C\ o(A) is the resolvent set, and if z € C \ o(A) then

R,(A) = (A—zl)~"

is the resolvent matrix

@ recall: z € o(A) if and only if A — z/ is not invertible
@ the resolvent set C \ o(A) is open

@ Ry(A)=A"1if0 ¢ o(A)

@ A,(A) “resolves” the equation Av —zv =b
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resolvent norms

e if A= SAS~ ' is diagonalizable and z € C \ o(A) then
R.(A) = (SAS™' —z8IS™") ' = S(A—zl) 'S
so in any induced norm
IR(A) < SIS (A= 27" || = 5(S) Jmax |\ —z|™"
€o(A)
@ if Ais normal then we can choose S = Q unitary with x2(Q) = 1 so

R,(A)|> = —z|7!
|Rz(A)]l2 AIrengag/g)IA Z|

@ one may plot g(z) = ||R:(A)|
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resolvent norms illustrated

@ contours of z — ||Rz(A)|l2 = ||(A— z/)~'||2 is best spectral picture?

>> [A,B] = gennormal (5);
>> resolveshow (A)
>> resolveshow (B)

o

A,B have same eigs; A normal but B not
normal case (LEFT)
nonnormal case (RIGHT)

o

o

>0

@ last slide already proved contours would be round for normal A
@ 0 (A)={zeC: |[(A-zl)""|2 > ¢ "} is the e-pseudospectrum of A
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nonnormal matrices, a warning

@ facts and definitions:
|A¥|| < ||A||¥ in any induced norm

[e] p(A) = max,\ea(A) |)\|

o if Ais normal then || A¥||2 = (||All2)* = p(A)¥

o if p(A) < 1then AX = 0as k — o proof?
@ but if Ais not normal and p(A) < 1 then ||A||2 can be big for a while

o e.g. random 100 x 100 matrices A,B with p(A) = p(B) < 1

[¢]

. 25 O Anomal: A |
>> max (abs (eig(A))) )

ans = 0.90909
>> max (abs (eig(B)))
ans = 0.90909

K
® B nonnormal: B8,

15
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redefining “spectrum”: nonexistence of resolvent

Definition
given A € C™", the spectrum of A is the set

o(A) = {\ € C| A— Al does not have a bounded inverse }

@ in C" this is the same as our original definition:
o(A)={\ e C|Av = \v for some v # 0}

@ in co-dimensions it is different because there exist one-to-one bounded
operators which do not have bounded inverses
o example 1: the one-to-one right-shift operator R on ¢' has spectrum?
o(R)={z e C : |z| < 1}, butit has no eigenvalues
o example 2: the hermitian multiplication operator (Mf)(x) = xf(x) on L?[0, 1]
has no eigenvalues but (M) = [0, 1]

2we will prove this by showing that o(L) = {z € C : |z| < 1} for the left-shift operator L = R*,
based on eigenvalues, and that o(A*) = o(A) in a Banach algebra
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e orthogonal projectors
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orthogonal projectors

Definition
P € C"™*" is an orthogonal projector if P> = P and P* = P J

@ as for any projector (P? = P):
ker P=1im(/—P), imP =ker(/I—P), C"=kerPoimP, o(P)c{0,1}
@ but for orthogonal projectors:

kerP LimP

o proof. if u € ker Pand v = Pz € imPthen u"v = u*(Pz) = (Pu)*z=0
@ orthogonal projectors are hermitian, thus normal

@ examples:
1
0, I, P= 1
0
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constructing orthogonal projectors from ON vectors

@ since P is hermitian and o(P) C {0, 1}, the spectral theorem plus
re-ordering of the columns of Q gives

P—Q/\Q*—Q[I 0] Q = Qo

where Tis a k x k identity and Q is a n x k matrix of columns of Q

Lemma

P e C"™" js an orthogonal projector if and only if there exist ON vectors
Qi,---,qk, for0 < k < n, so that

P=QQ" and Q=| g | Qi | € C™xk

e hard direction of proof is above; easy direction: (QQ*)2 = ...
e note *Q =1

@ rank 1 case: P =qq* = (aa")/(a*a)

@ construction from full-column-rank A: P = A(A*A)~'A*
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spectral theorem = decomposition into projectors

@ consider this calculation for A normal:

A
A2
A=Q0NQ" =Q ) Q"
An

n
=> Ngq
j=1

) Q" =g Mgi + -+ g AnGy

o Adecomposes into a linear combination of rank-one orthogonal projectors

@ thus normal matrices act on vectors like this:

n n
Av =" Nggiv=>_ X(g.v)q
j=1 J=1

o this formula appears in most applications of normal operators
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resolution of the identity

n
@ if Ais normal then A = Z)\,-q,-q,-* where {q;} are ON
i=1

@ if Ais normal then we can use its eigenvectors to decompose the identity:

n
I=QQ" =) qgq
i=1

o called a resolution of the identity
@ application: Parseval’s identity for any ON basis

n n
VIB=viv=viv=S"vagv =S l{gv) P
i=1 i=1
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spectra of big random matrices

@ claim (circular law). if A € R™" has entries which are normally-distributed
random variables with mean zero and variance n—"', so a; ~ N(0,n™"),
then as n — oo the spectrum of A fills the unit disc
>> A = randn(n,n)/sqrt (n);
>> lam = eig(A);

>> plot (real (lam),imag(lam),’o’), grid on, axis([-2 2 -2 2])

n=16 =100 n=400

2 4 o 1 2 2 1 o 1 2 2 1 o 1 2

@ but these matrices are not normal
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https://en.wikipedia.org/wiki/Circular_law

spectra of big random normal matrices

@ but randn (n, n) is not normal (i.e. normal with probablility zero)
@ construct a random normal matrix with the same spectrum:

function [A,B] = gennormal (n);
% GENNORMAL Generate a random n x n complex matrix A which is normal
% (but not hermitian). The entries have normal distributions. The

oe

eigenvalues will roughly cover the unit disc when n is large. Also
returns B, a nonnormal matrix with the same eigenvalues as A.

o

% Example:

% >> [A,B] = gennormal (100);

% >> lam = eig(A);

% >> plot (real (lam), imag(lam),’o’), grid on % same picture for B
% >> norm (A’ *A — A*A'") % very small

% >> norm (B’ *B - B*B’) % not small

oe

See also GENHERM, PROJMEASURE.

B = randn(n,n)/sgrt(n); % https://en.wikipedia.org/wiki/Circular_law
says eigenvalues of B are asymptotically
uniformly distributed on unit disc

o

o

[X,D] = eig(B); % D is diagonal and holds eigenvalues and
% X holds (nonorthogonal) eigenvectors
[Q,R] = gr(X); % Q holds ON basis for C”n, built from applying
% orthogonalization to columns of X
A = Q*D*Q’; % construct A to be normal but to have same

e

eigenvalues as B
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spectral subsets correspond to orthogonal projectors

@ | also wrote a code projmeasure.m which shows o(A) as a subset of
C and lets you select the eigenvalues for which you want eigenvectors

@ demo 1:

>> A = gennormal (100);

>> P = projmeasure (A); % <-— user input with mouse
% selects a projector

>> k = rank (P) % = number of selected eigenvalues
@ demo 2:

>> A = expm(ixeye(6) + gennormal (6));

>> [P,Qh] = projmeasure (A);

>> Qh % view selected eigenvectors
@ demo 3:

>> U = expm(irgenherm(10)); % random unitary matrix

>> [P,Qh] = projmeasure (U);

>> Qh % view selected eigenvectors
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projector-valued measures (von Neumann)

@ John von Neumann imagined these kind of spectral pictures in the 1920s
o before he invented electronic computers in the 1940s
@ he proposed a projector-valued measure E) for each A € B(C") normal

o if Z C o(A) C Cthen P = E»(Z) is an orthogonal projector
o im P = im E\(Z) is span of eigenvectors for eigenvalues A € Z

@ he built this to handle quantum mechanical operators rigorously

@ (von Neumann’s) spectral theorem. if A € B(H) normal, for H a Hilbert
space, then there exists a projector-valued measure E) so that

A= / AdE,
a(A)

@ the most general functional calculus follows immediately:
f(A) :/ f(\) dE,
o(A)

o fis merely measurable
o A could even be unbounded (i.e. not Lipschitz)
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Outline

e singular value decomposition
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why singular values?

@ eigenvalues can be useful!
@ but they are only defined for square matrices

o in oo-dimensions: “spectrum is useful, but only for B(X), not B(X, Y)”
@ ...and sometimes not so useful anyway

o only “safe” to use eigenvalues if eigenvectors are orthogonal (A normal)
o diagonalization A= SAS™' may tell us little about A when x(S) > 1
o square matrices can be defective anyway

@ however, any A € C™" has singular values
o what do the eigenvalues say?
Behavior of powers A* or functions f(A) like e*'.
o what do the singular values say?
Invertibility of A: rank, nullity
Geometric action of A: ||Al|2, [|A~"||2, condition number, e-pseudospectrum

o so, what information do you want?
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visualizing a matrix

v
1 . A
2
Tyl /

GKJ 01Uy AS

Figure 4.1. SVD of a 2 x 2 malriz.

figure from Trefethen & Bau, Numerical Linear Algebra, SIAM Press 1997

@ A € R™*" sends the unit sphere in R" to a possibly-degenerate
hyperellipsoid in R™
o this is the fundamental way to visualize a linear operator!
o also true for A€ C™*" .. .but less visualizable

@ the singular values of A define the geometry of the output hyperellipsoid
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singular value decomposition

Theorem

if A € C™" then there exist U € C™*™ unitary, V € C™" unitary, and
Y € R™" diagonal, with nonnegative entries, so that

A=UxrV*

@ singular value decomposition (SVD) of A
@ diagonal entries o, of X are the singular values of A
o note X is same shape as A, while U, V are always square
o normalization o1 > 02 > -+ > omingm,ny Makes ¥ unique
o ifA#0thenoss >0
o if A= 0 we take X = 0 and choose U, V as any unitaries
@ action of A= UXV* on a vector:
o multiplication by V* finds coefficients of the vector in the columns of V
o multiplication by X stretches the vector along standard axes
o multiplication by U rotates the vector to the output hyperellipsoid
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singular value decomposition: examples

@ example 1. if A= ﬁ g

} then

—0.75545 —0.6552]"

0.92621} {—0.6552 0.75545

A —0.92388 —0.38268] {5.3983
~ |—0.38268 0.92388

o ||All2 = 5.3983, ||A~"|| = 1/0.92621
o compare: o(A) = {5,1}

6 5
@ example 2. if B = [4 3] then
1 2

—0.82264 —0.05242 —0.56614| |9.49393 *
B— |: } |: 0.93025} {—0.76421 —0.64497

—0.52578 —0.30878  0.79259 064497 076421

—0.21636  0.94969 0.22646

o ||Bl||2 = 9.49393
o Bis not invertible
o o(B) is not defined
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singular value decomposition: proof

proof. Induct on n, the column size of A. If n = 1then A = [a] where a € C™. Then
a
= 2] T=tlall v=r
llall2
is an SVD for A.
For n > 1 let vy € C" be a unit vector which maximizes the continuous function
f(x) = [|Ax]l2

over the compact set S” = {x € C" : ||x||> = 1}. (We just used finite-dimensionality!) Then

Avy is a vector in C™ with length o4 = ||Avq||2 = ||Al|2. If o1 = 0 we are done because A is

the zero matrix. (Why?) Otherwise o1 > 0 so let uy = Avy/o¢. Now we have Avy = oy uy.
Extend v4 and uy to orthonormal bases of C", C™, respectively, giving unitary matrices

v:{w ] o:[m ]

Now apply Ato V,
" } |
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Next apply U*, and note that U*u; = ey:

e AT o1 | z*
UAV_{0 M}



singular value decomposition: proof cont.

cont. We have
kAT (o2} z*
UrAV = { 0| M }

for z € C"~1 and M € C(M-)*(=1), Because U, V are unitary, the matrix norm is
unchanged: || U*AV|2 = ||A|2.

In fact z = 0, for the following reason. Let w € C™ be the vector w = [021} . Itis nonzero

because ||w|2 = (o2 + ||2]|3)"/2 > o4 > 0. But

oy | Z* o1 _ 0'12 +z*z
0| M z]|, Mz
Thatis, |0 AVWI[p > (o2 + |1Z]8)!/2| Wiz, so i 2 # O then [Alls = | T* AVl > o,

contradicting the definition of o4.
Thus

2 2 2 2y1/2
> of + |12l15 = (oF + 11213)"/?[wll2.
2

featy | 01| 0
UAV_{0 M}

By the induction hypothesis there exist {J, 3, ¥ so that M = s {/*. Since products of
unitaries are unitary, we have an SVD of A:

- (L) ] (L3 -ome -
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singular value decomposition: facts

[All2 = [[X]l2 = o
«a is a singular value of A if and only if o2 is an eigenvalue of A*A
the singular values of A are the same as those of A*

forany A e C™",
o rank(A) = k where o > 0and ox41 =0
o nullity(A) = g where q is number of zero singular values (m > n)
if A€ C™" is square then
| det(A)| = [T, )
o if Ais invertible then ||A~"||2 = 1/on
o ka(A) =o1/on € [1,00] is the eccentricity of the output hyperellipsoid
o op < Minyeo(a) Al < maxaeo(a) (A < oy

if Ais square and normal then o; = |);| (with ordering of o(A))

[¢]
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Outline

@ conclusion
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please try reading the textbook backwards now

@ go to the end of Chapter 15 “C* algebras” and read backwards:

von Neumann’s spectral theorem for bounded operators on Hilbert spaces
functional calculus for normal elements

singular value decomposition for compact operators between Hilbert spaces
spectral theorem for compact normal operators on a Hilbert space

definition of normal, unitary, and self-adjoint (hermitian) elements

definition of a C* algebra

@ on the other hand, go to the beginning of Chapter 14 “Spectral theory”
and read forward

@ | hope that by the end of the semester it will make sense!

O O O O O O
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