Finite-dimensional spectral theory part I: from \mathbb{C}^n to the Schur decomposition

Ed Bueler

MATH 617 Functional Analysis

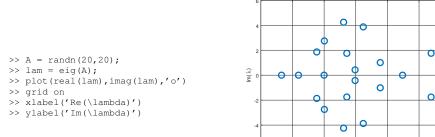
Spring 2020

linear algebra versus functional analysis

- these slides are about linear algebra, i.e. vector spaces of finite dimension, and linear operators on those spaces, i.e. matrices
- one definition of *functional analysis* might be: "rigorous extension of linear algebra to ∞-dimensional topological vector spaces"
 - o it is important to understand the finite-dimensional case!
- the goal of these part I slides is to prove the Schur decomposition and the spectral theorem for matrices
- good references for these slides:
 - L. Trefethen & D. Bau, *Numerical Linear Algebra*, SIAM Press 1997
 - G. Strang, Introduction to Linear Algebra, 5th ed., Wellesley-Cambridge Press, 2016
 - G. Golub & C. van Loan, *Matrix Computations*, 4th ed., Johns Hopkins University Press 2013

the spectrum of a matrix

- the spectrum $\sigma(A)$ of a square matrix A is its set of eigenvalues
 - o reminder later about the definition of eigenvalues
 - $\sigma(A)$ is a subset of the complex plane \mathbb{C}
 - the plural of spectrum is spectra; the adjectival is spectral
- graphing $\sigma(A)$ gives the matrix a personality
 - $\,\circ\,$ example below: random, nonsymmetric, real 20 \times 20 matrix



-4

-2

0

Re())

6

4

\mathbb{C}^n is an inner product space

• we use complex numbers $\mathbb C$ from now on

- why? because eigenvalues can be complex even for a real matrix
- recall: if $\alpha = x + iy \in \mathbb{C}$ then $\overline{\alpha} = x iy$ is the *conjugate*
- let \mathbb{C}^n be the space of (column) vectors with complex entries:

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

• **definition.** an *inner product* on \mathbb{C}^n is a function

$$\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C},$$

almost-bilinear (sesquilinear¹), with symmetry and positivity properties

• namely, for all $u, v, w \in \mathbb{C}^n$ and $\alpha \in \mathbb{C}$,

$$\circ \langle \boldsymbol{w}, \boldsymbol{u} + \boldsymbol{v} \rangle = \langle \boldsymbol{w}, \boldsymbol{u} \rangle + \langle \boldsymbol{w}, \boldsymbol{v} \rangle$$

$$\circ \langle \boldsymbol{u}, \alpha \boldsymbol{v} \rangle = \alpha \langle \boldsymbol{u}, \boldsymbol{v} \rangle$$

•
$$\langle \boldsymbol{U}, \boldsymbol{V} \rangle = \langle \boldsymbol{V}, \boldsymbol{U} \rangle$$

 $\circ \ \langle u,u
angle \geq$ 0, and $\langle u,u
angle =$ 0 if and only if u= 0

¹ kind of a joke, as it means "1 ½ linear"

norm and adjoint vector

• the inner product is *conjugate-linear* in its first position:

$$\circ \langle u + v, w \rangle = \overline{\langle w, u + v \rangle} = \overline{\langle w, u \rangle} + \overline{\langle w, v \rangle} = \langle u, w \rangle + \langle v, w \rangle$$

$$\circ \langle \alpha u, v \rangle = \overline{\langle v, \alpha u \rangle} = \overline{\alpha} \overline{\langle v, u \rangle} = \overline{\alpha} \langle u, v \rangle$$

• definition. an inner product $\langle \cdot, \cdot \rangle$ induces a *norm* $\| \cdot \| : \mathbb{C}^n \to \mathbb{R}$:

$$\|u\| = \sqrt{\langle u, u \rangle}$$

• the *hermitian transpose (adjoint)* of a vector $v \in \mathbb{C}^n$ is the row vector

$$\mathbf{v}^* = [\overline{\mathbf{v}_1}, \dots, \overline{\mathbf{v}_n}]$$

the usual inner product is just a matrix product on Cⁿ:

$$\langle u, v \rangle = u^* v = \begin{bmatrix} \overline{u_1} & \cdots & \overline{u_n} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

linear-dependence, span, basis

- definition. a (finite) set of vectors {v_i}^m_{i=1} ⊂ Cⁿ is *linearly-dependent* if there exist scalars α_i ∈ C, not all zero, so that α₁v₁ + ··· + α_mv_m = 0
 - o a set of vectors is linearly-independent if it is not linearly-dependent
 - vectors in a linearly-independent set are nonzero
- **definition.** a finite set of vectors $\{v_i\}_{i=1}^m \operatorname{span} \mathbb{C}^n$ if for any $w \in \mathbb{C}^n$ there exist scalars α_i so that $w = \alpha_1 v_1 + \cdots + \alpha_m v_m$
- Iemma.²
 - if $\{v_i\}_{i=1}^m \subset \mathbb{C}^n$ is linearly-independent then $m \leq n$
 - if $\{v_i\}_{i=1}^m \subset \mathbb{C}^n$ spans \mathbb{C}^n then $m \ge n$
- definition. a finite set of vectors {v_i}^m_{i=1} ⊂ Cⁿ is a basis if the set is linearly-independent and it spans Cⁿ
 - by the lemma, m = n
 - the dimension n is well-defined as the number of elements in a basis

²https://en.wikipedia.org/wiki/Steinitz_exchange_lemma

- definition. $A : \mathbb{C}^n \to \mathbb{C}^n$ is *linear* if $A(\alpha u + \beta v) = \alpha A(u) + \beta A(v)$
 - we call such a function a *linear operator* and we write Au = A(u)
- given a basis, one may represent a linear operator as a (square) matrix
 matrix multiplication is just function composition
- definition. A is *invertible* if there exists B so that AB = BA = I
- lemma. matrix A is invertible if and only if its columns form a basis

meanings of matrix multiplication

- the "purpose" of a matrix $A \in \mathbb{C}^{n \times m}$ is to multiply vectors $u \in \mathbb{C}^m$
 - o a matrix is merely the representation of a linear operator
 - o operations on entries, e.g. det() or row operations, are less fundamental
- when you see "Au" remember two views:

$$Au = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} u = \begin{bmatrix} r_1 u \\ r_2 u \\ \vdots \\ r_n u \end{bmatrix}$$
$$Au = \begin{bmatrix} a_1 & a_2 & \dots & a_m \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} = u_1 \begin{bmatrix} a_1 \end{bmatrix} + u_2 \begin{bmatrix} a_2 \end{bmatrix} + \dots + u_m \begin{bmatrix} a_m \end{bmatrix}$$

- A acts on u acts from the left; each entry is an inner product
- *u* acts from the right on *A*; get a linear-combination of columns
- also: if A ∈ C^{n×n} is invertible then A⁻¹ w computes the coefficients of w in the basis of columns of A

Ed Bueler (MATH 617)

adjoints, orthonormal bases, and unitary matrices

• definition. the hermitian transpose or adjoint of $A \in \mathbb{C}^{n \times m}$ is $A^* \in \mathbb{C}^{m \times n}$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & & a_{2m} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \quad \rightarrow \quad A^* = \begin{bmatrix} \overline{a_{11}} & \overline{a_{21}} & \dots & \overline{a_{n1}} \\ \overline{a_{12}} & \overline{a_{22}} & & \overline{a_{n2}} \\ \vdots & & \ddots & \vdots \\ \overline{a_{1m}} & \overline{a_{2m}} & \dots & \overline{a_{nm}} \end{bmatrix}$$

definition. a basis {v_i}ⁿ_{i=1} of Cⁿ is orthonormal (ON) if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \mathbf{v}_i^* \mathbf{v}_j = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

• "ortho" means $\langle v_i, v_j \rangle = 0$ if $i \neq j$ and "normal" means $||v_i|| = 1$

- definition. a matrix U is unitary if $U^*U = I$, thus $U^{-1} = U^*$
- lemma. a matrix U is unitary if and only if its columns form an ON basis proof. The entries of a matrix product are inner products between the rows of the left factor and the columns of the right factor. The entries of I are δ_{ij}.

Gram-Schmidt process

given a set of vectors {*w_i*}^m_{i=1} ⊂ Cⁿ we can generate new orthonormal vectors which span the same subspace

• if the original set spans \mathbb{C}^n then the result is an ON basis

• formulas:

$$\begin{split} \tilde{v} &= w_{1} \quad \rightarrow & v_{1} = \tilde{v}/\|\tilde{v}\| \\ \tilde{v} &= w_{2} - \langle v_{1}, w_{2} \rangle v_{1} \quad \rightarrow & v_{2} = \tilde{v}/\|\tilde{v}\| \\ \tilde{v} &= w_{3} - \langle v_{1}, w_{3} \rangle v_{1} - \langle v_{2}, w_{3} \rangle v_{2} \quad \rightarrow & v_{3} = \tilde{v}/\|\tilde{v}\| \\ \tilde{v} &= w_{4} - \langle v_{1}, w_{4} \rangle v_{1} - \langle v_{2}, w_{4} \rangle v_{2} - \langle v_{3}, w_{4} \rangle v_{3} \quad \rightarrow & v_{4} = \tilde{v}/\|\tilde{v}\| \\ \vdots & \vdots & \vdots \end{split}$$

exception: if *v* = 0 at any stage then we ignore that *w_i* and skip to *w_{i+1}* notice the triangular structure

Iemma.

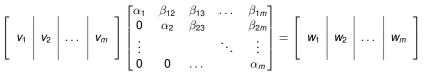
- $\{v_i\}$ is ON
- span $\{V_i\} = span\{W_i\}$
- if $\{w_i\}_{i=1}^m$ spans \mathbb{C}^n , thus $m \ge n$, then $\{v_i\}_{i=1}^n$ is an ON basis

Gram-Schmidt is QR

• the Gram-Schmidt formulas are of the form

$$\alpha_i \mathbf{v}_i \stackrel{*}{=} \mathbf{w}_i - \sum_{j=1}^{i-1} \beta_{ji} \mathbf{v}_j$$

where $\alpha_i = \|\tilde{v}\|$ is a normalization constant and $\beta_{ji} = \langle v_j, w_i \rangle$ • moving the v_i to the left in *, and writing vectors as columns gives



• this is a "reduced" QR decomposition

$$\hat{Q}\hat{R} = A$$

- A is $n \times m$ and contains the original vectors w_i ,
- \hat{Q} is the same size as A and contains the ON vectors v_i ,
- and \hat{R} is (upper-) right-triangular and $m \times m$, thus small if $m \ll n$
- if m = n and columns of A span \mathbb{C}^n (A has full rank) then Q is unitary
- methods: numerical QR uses Householder, not Gram-Schmidt, for stability reasons

Gram-Schmidt process: example 1

• suppose we have m = 3 vectors in \mathbb{C}^3 :

$$w_1 = \begin{bmatrix} 9\\3\\4 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 1\\6\\9 \end{bmatrix}, \quad w_3 = \begin{bmatrix} 6\\7\\3 \end{bmatrix}$$

applying the formulas on slide 10:

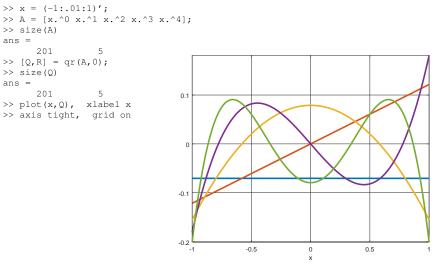
$$v_1 = \begin{bmatrix} 0.87416\\ 0.29139\\ 0.38851 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -0.48456\\ 0.46984\\ 0.73787 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -0.03247\\ 0.83327\\ -0.55191 \end{bmatrix}$$

• compare this MATLAB calculation:

$>> A = [9 \ 1 \ 6;$	367;49	3];
>> [Q, R] = qr(A)	
Q =		
-0.87416	0.48456	0.032465
-0.29139	-0.46984	-0.83327
-0.38851	-0.73787	0.55191
R =		
-10.296	-6.1191	-8.4502
0	-8.9753	-2.5952
0	0	-3.9824

Gram-Schmidt process: example 2

what is this MATLAB calculation doing?:



the plot shows Legendre polynomials up to degree 4

Ed Bueler (MATH 617)

technique: extend to an ON basis

- a key technique, for proofs related to spectral theory, is to extend *m* < *n* ON vectors to an ON basis
- let $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{C}^n , with $(e_i)_j = \delta_{ij}$
- **method.** given ON vectors $\{u_1, \ldots, u_m\}$, for $1 \le m < n$, apply the Gram-Schmidt process to

$$W_1 = U_1, \quad \ldots \quad W_m = U_m, \quad W_{m+1} = e_1, \quad \ldots \quad W_{m+n} = e_n$$

- note: this set of m + n vectors does indeed span \mathbb{C}^n !
- the first *m* steps of G.-S. are trivial, but after that there will be discarded vectors because $\|\tilde{v}\| = 0$
- result is ON set $\{v_i\}_{i=1}^n$ where first *m* vectors were given
- as matrices, if \hat{Q} has ON columns then we extend to a unitary matrix:

$$\hat{Q} = \left[\begin{array}{c|c} u_1 & \dots & u_m \end{array} \right] \rightarrow Q = \left[\begin{array}{c|c} u_1 & \dots & u_m & v_{m+1} & \dots & v_n \end{array} \right]$$

definition. given a square matrix A ∈ C^{n×n}, v ∈ Cⁿ is an *eigenvector* if v ≠ 0 and if there exists λ ∈ C so that

$$Av = \lambda v$$

- λ is the *eigenvalue* for *v*
- idea: A acts in a simple way on (multiples of) v, simply by scaling
- **definition.** the spectrum $\sigma(A)$ of $A \in \mathbb{C}^{n \times n}$ is the set of its eigenvalues
- **lemma.** $\lambda \in \sigma(A)$ if and only if $\det(\lambda I A) = 0$ *proof.* $\lambda \in \sigma(A) \iff \exists$ nonzero soln. to $(\lambda I - A)v = 0 \iff \det(\lambda I - A) = 0$ • **corollary.** $\sigma(A)$ is nonempty

proof. $p(\lambda) = \det(\lambda I - A)$ is a degree *n* polynomial, which has a root $\lambda \in \mathbb{C}$

hermitian matrices and their eigenvalues

- general facts about adjoints:
 - $\circ (AB)^* = B^*A^*$
 - in usual inner product $\langle v, w \rangle = v^* w$: $\langle v, Aw \rangle = \langle A^* v, w \rangle$

• definition. $A \in \mathbb{C}^{n \times n}$ is hermitian if $A^* = A$

- also called self-adjoint
- $\overline{a_{ij}} = a_{ji} \dots$ so the diagonal entries of A are real
- in usual inner product $\langle v, w \rangle = v^* w$: $\langle v, Aw \rangle = \langle Av, w \rangle$
- if A has real entries then $A^{\top} = A$, and A is symmetric
- lemma. if A is hermitian and $\lambda \in \sigma(A)$ then λ is real

proof. a classic exercise ... for you

 lemma. if A is hermitian and v, w ∈ Cⁿ are eigenvectors associated to distinct eigenvalues then v, w are orthogonal

proof. a classic exercise: if $Av = \lambda v$ and $Aw = \mu w$ then λ, μ are real so

$$(\lambda - \mu) \langle \mathbf{v}, \mathbf{w} \rangle = \langle \lambda \mathbf{v}, \mathbf{w} \rangle - \langle \mathbf{v}, \mu \mathbf{w} \rangle = \langle A \mathbf{v}, \mathbf{w} \rangle - \langle \mathbf{v}, A \mathbf{w} \rangle = \langle \mathbf{v}, A \mathbf{w} \rangle - \langle \mathbf{v}, A \mathbf{w} \rangle = 0$$

and we have assumed $\lambda - \mu \neq 0$

eigendecompositions

• for any $A \in \mathbb{C}^{n \times n}$, if v_1, \ldots, v_m are eigenvectors with eigenvalues $\lambda_1, \ldots, \lambda_m$ then we can collect the statements $Av_i = \lambda_i v_i$ as

$$A\left[\begin{array}{c|c} v_1 & \dots & v_m \end{array}\right] = \left[\begin{array}{c|c} v_1 & \dots & v_m \end{array}\right] \left[\begin{array}{c|c} \lambda_1 & \dots & \\ & \ddots & \\ & & \lambda_m \end{array}\right]$$

equivalently:

$$AV = V\Lambda$$

• if *V* is square and invertible then we have a decomposition of *A*:

$$A = V \Lambda V^{-1}$$

why does this matter? often A is iterated, or a polynomial is applied,

$$A^{k} = (V \wedge V^{-1})^{k} = V \wedge V^{-1} V \wedge V^{-1} \dots V \wedge V^{-1} = V \wedge^{k} V^{-1}$$
$$p(A) = V p(\Lambda) V^{-1}$$

• Λ^k , $p(\Lambda)$ are easy-to-understand diagonal matrices

similarity and diagonalizability

• definition. A, B are similar if there exists V invertible so that

 $A = VBV^{-1}$

• **lemma.** if *A*, *B* are similar then $\sigma(A) = \sigma(B)$ proof. noting det(*TS*) = det(*T*) det(*S*), we have

$$det(\lambda I - A) = det(\lambda VV^{-1} - VBV^{-1}) = det(V) det(\lambda I - B) det(V^{-1})$$
$$= det(V) det(\lambda I - B) det(V)^{-1} = det(\lambda I - B) \Box$$

- **lemma.** if *A* is triangular or diagonal then $\sigma(A) = \{a_{ii}\}$ (diagonal entries) *proof.* det $(\lambda I A) = \prod_{i=1}^{n} \lambda a_{ii}$
- **definition.** *A* is *diagonalizable* if there exists *V* invertible and ∧ diagonal so that

$$A = V \Lambda V^{-1}$$

- o equivalently, A is diagonalizable if it is similar to a diagonal matrix
- not every square matrix is diagonalizable!

non-diagonalizable ("defective") matrices

- if you pick a matrix $A \in \mathbb{C}^{n \times n}$ at random then it will be diagonalizable with probability one,³ but non-diagonalizable matrices exist
- simplest example (*check all this!*): $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 - note A is triangular, and $\sigma(A) = \{0\}$
 - if $A = V \wedge V^{-1}$ for V invertible then columns of V would be linearly-independent eigenvectors: $Av_1 = 0v_1$ and $Av_2 = 0v_2$
 - but in fact $(\lambda I A)v = 0$ has only a one-dimensional solution space
- all non-diagonal examples A are built by choosing J to be a "non-diagonal Jordan form," with at least one block of this form on the diagonal:

$$\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}, \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}, \dots,$$

and with *J* otherwise diagonal, and defining $A = VJV^{-1}$ for some invertible *V*

³ this assumes only that your probability measure has a continuous density with respect to Lebesgue measure

eigenvalue-revealing decompositions

- there are four famous "eigenvalue-revealing" decompositions of square matrices A ∈ C^{n×n}:
 - $A = V \wedge V^{-1}$ if A is diagonalizable $A = VJV^{-1}$ for any A, where J is special triangular Jordan form $A = Q \wedge Q^*$ if A is hermitian, where Q is unitary $A = QTQ^*$ for any A, where T is triangular and Q is unitary

• respectively: MATLAB commands $A = VAV^{-1}$ is eigendecomposition or diagonalization eig(A) $A = VJV^{-1}$ is Jordan canonical form $A = QAQ^*$ is spectral theorem eig(A) $A = QTQ^*$ is Schur decomposition schur (A, 'complex')

- the Jordan canonical form cannot be computed if rounding errors exist⁴
- the Schur decomposition is the most important in practice, as it always exists and it can be stably computed over \mathbb{R} or \mathbb{C}

Ed Bueler (MATH 617)

⁴G. Golub & J. Wilkinson 1976, III-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Review 18(4), 578–619

Schur decomposition

• **theorem.** if $A \in \mathbb{C}^{n \times n}$ then there exist $T, Q \in \mathbb{C}^{n \times n}$, with T upper-triangular and Q unitary, so that

$$A = QTQ^*$$

proof. Induct on *n*. If n = 1 then the result follows with $T = A = [a_{11}]$ and Q = I = [1]. For n > 1 let $v \neq 0$ be an eigenvector of *A*, with eigenvalue λ . Let $u_1 = v/||v||$ and extend to a unitary matrix:

$$U = \left[\begin{array}{c|c} u_1 & u_2 & \dots & u_n \end{array} \right]$$

Apply *A* and note that $Au_1 = \lambda u_1$:

$$AU = \left[\begin{array}{c|c} \lambda_1 u_1 & Au_2 & \dots & Au_n \end{array} \right]$$

Apply $U^* = U^{-1}$, observe that $U^*Au_1 = \lambda_1 U^*u_1 = \lambda_1 e_1$, and write $w_j = U^*Au_j$:

$$U^*AU = \left[\begin{array}{c|c} \lambda_1 e_1 & w_2 & \dots & w_n \end{array}\right]$$

(We don't care about the form of the vectors $w_2, \ldots, w_n \in \mathbb{C}^n$.)

Ed Bueler (MATH 617)

Finite-dimensional spectral theory

Schur decomposition, proof cont.

We have made progress toward upper-triangular form. In fact, we may write

$$U^*AU = \begin{bmatrix} \lambda_1 & z^* \\ \hline 0 & M \end{bmatrix}$$

for some $z \in \mathbb{C}^{n-1}$ and $M \in \mathbb{C}^{n-1 \times n-1}$. By induction, M has a Schur decomposition, $M = \hat{Q}\hat{T}\hat{Q}^*$, where \hat{T}, \hat{Q} are the same size as M. Note that

$$\begin{bmatrix} 1 & 0 \\ \hline 0 & \hat{Q} \end{bmatrix}$$

is unitary. Now we can transform the whole matrix U^*AU to triangular form:

$$\begin{bmatrix} 1 & 0 \\ \hline 0 & \hat{Q}^* \end{bmatrix} U^* A U \begin{bmatrix} 1 & 0 \\ \hline 0 & \hat{Q} \end{bmatrix} = \begin{bmatrix} \lambda_1 & z^* \hat{Q} \\ \hline 0 & \hat{T} \end{bmatrix}$$

Now let

$$T = \begin{bmatrix} \lambda_1 & z^* \hat{Q} \\ 0 & \hat{T} \end{bmatrix}, \quad Q = U \begin{bmatrix} 1 & 0 \\ 0 & \hat{Q} \end{bmatrix}$$

We have $A = Q^* TQ$.

 note key steps at start of proof: "let v ≠ 0 be an eigenvector of A" and "extend to a unitary matrix"

Ed Bueler (MATH 617)

Schur decomposition: computed examples

- note the diagonal entries of T contain the eigenvalues (compare eig (A))
- example 1: general case

```
>> A=randn(4,4);
>> [Q,T] = schur(A)
Q =
0.25290 0.78457 -0.32111 0.46624
0.12587 0.07899 -0.70892 -0.68945
-0.82852 0.47758 0.15009 -0.25088
-0.48348 -0.38746 -0.60974 0.49431
T =
1.94208 -1.22908 -1.37600 -0.70166
0.00000 -1.81581 0.21700 -0.51769
0.00000 0.00000 0.69477 -1.15766
0.00000 0.00000 0.69477 -1.15766
0.00000 0.00000 0.00000 -0.59708
>> norm(A-Q*T*Q')
ans = 2.0928e-15
```

o we just got lucky; see help schur for real vs. complex Schur decompositions

example 2: hermitian case

```
>> B = randn(4,4); A = B + B';
>> [Q,T] = schur(A); T
T =
    3.42692 -0.00000 -0.00000 -0.00000
    0.00000    0.96497    0.00000 -0.00000
    0.00000    0.00000 -2.92548    0.00000
    0.00000    0.00000 -4.61828
```

• **lemma.** if *A* is hermitian then the Schur decomposition is a unitary diagonalization

proof. $A^* = A$ so $QT^*Q^* = QTQ^*$ so $T^* = T$

- there is a larger class of matrices where this happens
- definition. $A \in \mathbb{C}^{n \times n}$ is normal if $AA^* = A^*A$
- examples:
 - A hermitian \implies A normal
 - U unitary $\implies U$ normal
 - S skew-hermitian⁵ \implies S normal

$${}^{5}S^{*} = -S$$

 corollary (spectral theorem). if A is normal then there exists A diagonal and Q unitary so that

$$A = Q \wedge Q^*$$

proof. From the Schur decomposition, $A = QTQ^*$. Since A is normal, it follows that $TT^* = T^*T$. But T is upper-triangular, so

$$T = \begin{bmatrix} t_{11} & z^* \\ \hline 0 & R \end{bmatrix}$$

where *R* is also upper triangular. An easy calculation shows $(TT^*)_{11} = |t_{11}|^2 + ||z||^2$ while $(T^*T)_{11} = |t_{11}|^2$. Thus z = 0. Now induct to show *T* is diagonal.

where we stand

- in part II we will discuss consequences of the spectral theorem
- ... and get to the singular value decomposition
- almost everything we do will have some kind of analog in ∞ -dimensions
- ... and appear somewhere in our textbook⁶
- ullet ... but most proof steps do not extend directly to ∞ -dimensions
- questions. in an ∞ -dimensional Hilbert space,
 - o what is the meaning of "span" and "basis"?
 - o are matrices meaningful?
 - o is a one-to-one linear operator invertible?
 - o does the Gram-Schmidt process work as before?
 - o does every linear operator have an eigenvector?
 - is there a Schur decomposition of every linear operator?
 - o is there a spectral theorem of hermitian or normal operators?

⁶Muscat, Functional Analysis; see Chapter 10 for Hilbert spaces