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linear algebra versus functional analysis

these slides are about linear algebra, i.e. vector spaces of finite
dimension, and linear operators on those spaces, i.e. matrices
one definition of functional analysis might be: “rigorous extension of
linear algebra to∞-dimensional topological vector spaces”
◦ it is important to understand the finite-dimensional case!

the goal of these part I slides is to prove the Schur decomposition and the
spectral theorem for matrices
good references for these slides:
◦ L. Trefethen & D. Bau, Numerical Linear Algebra, SIAM Press 1997
◦ G. Strang, Introduction to Linear Algebra, 5th ed., Wellesley-Cambridge

Press, 2016
◦ G. Golub & C. van Loan, Matrix Computations, 4th ed., Johns Hopkins

University Press 2013
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the spectrum of a matrix

the spectrum σ(A) of a square matrix A is its set of eigenvalues
◦ reminder later about the definition of eigenvalues
◦ σ(A) is a subset of the complex plane C
◦ the plural of spectrum is spectra; the adjectival is spectral

graphing σ(A) gives the matrix a personality
◦ example below: random, nonsymmetric, real 20× 20 matrix

>> A = randn(20,20);
>> lam = eig(A);
>> plot(real(lam),imag(lam),’o’)
>> grid on
>> xlabel(’Re(\lambda)’)
>> ylabel(’Im(\lambda)’)
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Cn is an inner product space

we use complex numbers C from now on
◦ why? because eigenvalues can be complex even for a real matrix
◦ recall: if α = x + iy ∈ C then α = x − iy is the conjugate

let Cn be the space of (column) vectors with complex entries:

v =

v1
...

vn


definition. an inner product on Cn is a function

〈·, ·〉 : Cn × Cn → C,

almost-bilinear (sesquilinear1), with symmetry and positivity properties
namely, for all u, v ,w ∈ Cn and α ∈ C,
◦ 〈w , u + v〉 = 〈w , u〉+ 〈w , v〉
◦ 〈u, αv〉 = α 〈u, v〉
◦ 〈u, v〉 = 〈v , u〉
◦ 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 if and only if u = 0

1kind of a joke, as it means “1 1
2 linear”
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norm and adjoint vector

the inner product is conjugate-linear in its first position:
◦ 〈u + v ,w〉 = 〈w , u + v〉 = 〈w , u〉+ 〈w , v〉 = 〈u,w〉+ 〈v ,w〉
◦ 〈αu, v〉 = 〈v , αu〉 = α〈v , u〉 = α 〈u, v〉

definition. an inner product 〈·, ·〉 induces a norm ‖ · ‖ : Cn → R:

‖u‖ =
√
〈u,u〉

the hermitian transpose (adjoint) of a vector v ∈ Cn is the row vector

v∗ = [v1, . . . , vn]

the usual inner product is just a matrix product on Cn:

〈u, v〉 = u∗v =
[
u1 · · · un

] v1
...

vn
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linear-dependence, span, basis

definition. a (finite) set of vectors {vi}m
i=1 ⊂ Cn is linearly-dependent if

there exist scalars αi ∈ C, not all zero, so that α1v1 + · · ·+ αmvm = 0
◦ a set of vectors is linearly-independent if it is not linearly-dependent
◦ vectors in a linearly-independent set are nonzero

definition. a finite set of vectors {vi}m
i=1 span Cn if for any w ∈ Cn there

exist scalars αi so that w = α1v1 + · · ·+ αmvm

lemma.2

◦ if {vi}m
i=1 ⊂ Cn is linearly-independent then m ≤ n

◦ if {vi}m
i=1 ⊂ Cn spans Cn then m ≥ n

definition. a finite set of vectors {vi}m
i=1 ⊂ Cn is a basis if the set is

linearly-independent and it spans Cn

◦ by the lemma, m = n
◦ the dimension n is well-defined as the number of elements in a basis

2https://en.wikipedia.org/wiki/Steinitz_exchange_lemma
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linear operators and matrices

definition. A : Cn → Cn is linear if A(αu + βv) = αA(u) + βA(v)

◦ we call such a function a linear operator and we write Au = A(u)

given a basis, one may represent a linear operator as a (square) matrix
◦ matrix multiplication is just function composition

definition. A is invertible if there exists B so that AB = BA = I
lemma. matrix A is invertible if and only if its columns form a basis
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meanings of matrix multiplication

the “purpose” of a matrix A ∈ Cn×m is to multiply vectors u ∈ Cm

◦ a matrix is merely the representation of a linear operator
◦ operations on entries, e.g. det() or row operations, are less fundamental

when you see “Au” remember two views:

Au =


r1

r2

...
rn

 u =


r1u
r2u
...

rnu



Au =

 a1 a2 . . . am




u1

u2
...

um

 = u1

a1

+ u2

a2

+ · · ·+ um

am



◦ A acts on u acts from the left; each entry is an inner product
◦ u acts from the right on A; get a linear-combination of columns

also: if A ∈ Cn×n is invertible then A−1w computes the coefficients of w in
the basis of columns of A
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adjoints, orthonormal bases, and unitary matrices

definition. the hermitian transpose or adjoint of A ∈ Cn×m is A∗ ∈ Cm×n:

A =


a11 a12 . . . a1m
a21 a22 a2m
...

. . .
...

an1 an2 . . . anm

 → A∗ =


a11 a21 . . . an1
a12 a22 an2
...

. . .
...

a1m a2m . . . anm


definition. a basis {vi}n

i=1 of Cn is orthonormal (ON) if

〈vi , vj〉 = v∗i vj = δij =

{
1, i = j
0, i 6= j

◦ “ortho” means 〈vi , vj〉 = 0 if i 6= j and “normal” means ‖vi‖ = 1

definition. a matrix U is unitary if U∗U = I, thus U−1 = U∗

lemma. a matrix U is unitary if and only if its columns form an ON basis
proof. The entries of a matrix product are inner products between the rows of the

left factor and the columns of the right factor. The entries of I are δij .
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Gram-Schmidt process

given a set of vectors {wi}m
i=1 ⊂ Cn we can generate new orthonormal

vectors which span the same subspace
◦ if the original set spans Cn then the result is an ON basis

formulas:

ṽ = w1 → v1 = ṽ/‖ṽ‖
ṽ = w2 − 〈v1,w2〉 v1 → v2 = ṽ/‖ṽ‖
ṽ = w3 − 〈v1,w3〉 v1 − 〈v2,w3〉 v2 → v3 = ṽ/‖ṽ‖
ṽ = w4 − 〈v1,w4〉 v1 − 〈v2,w4〉 v2 − 〈v3,w4〉 v3 → v4 = ṽ/‖ṽ‖

...
...

◦ exception: if ṽ = 0 at any stage then we ignore that wi and skip to wi+1

◦ notice the triangular structure

lemma.
◦ {vi} is ON
◦ span{vi} = span{wi}
◦ if {wi}m

i=1 spans Cn, thus m ≥ n, then {vi}n
i=1 is an ON basis
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Gram-Schmidt is QR

the Gram-Schmidt formulas are of the form

αivi
∗
= wi −

i−1∑
j=1

βjivj

where αi = ‖ṽ‖ is a normalization constant and βji = 〈vj ,wi〉
moving the vi to the left in ∗, and writing vectors as columns gives

 v1 v2 . . . vm



α1 β12 β13 . . . β1m

0 α2 β23 β2m
...

. . .
...

0 0 . . . αm

 =

 w1 w2 . . . wm


this is a “reduced” QR decomposition

Q̂R̂ = A

◦ A is n ×m and contains the original vectors wi ,
◦ Q̂ is the same size as A and contains the ON vectors vi ,
◦ and R̂ is (upper-) right-triangular and m ×m, thus small if m� n

if m = n and columns of A span Cn (A has full rank) then Q is unitary
methods: numerical QR uses Householder, not Gram-Schmidt, for stability reasons

Ed Bueler (MATH 617) Finite-dimensional spectral theory Spring 2020 11 / 26



Gram-Schmidt process: example 1

suppose we have m = 3 vectors in C3:

w1 =

9
3
4

 , w2 =

1
6
9

 , w3 =

6
7
3


applying the formulas on slide 10:

v1 =

0.87416
0.29139
0.38851

 , v2 =

−0.48456
0.46984
0.73787

 , v3 =

−0.03247
0.83327
−0.55191


compare this MATLAB calculation:
>> A = [9 1 6; 3 6 7; 4 9 3];
>> [Q,R] = qr(A)
Q =

-0.87416 0.48456 0.032465
-0.29139 -0.46984 -0.83327
-0.38851 -0.73787 0.55191

R =
-10.296 -6.1191 -8.4502

0 -8.9753 -2.5952
0 0 -3.9824
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Gram-Schmidt process: example 2

what is this MATLAB calculation doing?:
>> x = (-1:.01:1)’;
>> A = [x.^0 x.^1 x.^2 x.^3 x.^4];
>> size(A)
ans =

201 5
>> [Q,R] = qr(A,0);
>> size(Q)
ans =

201 5
>> plot(x,Q), xlabel x
>> axis tight, grid on

-1 -0.5 0 0.5 1
-0.2

-0.1

0

0.1

x

the plot shows Legendre polynomials up to degree 4
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technique: extend to an ON basis

a key technique, for proofs related to spectral theory, is to extend m < n
ON vectors to an ON basis
let {ei}n

i=1 be the standard basis of Cn, with (ei )j = δij

method. given ON vectors {u1, . . . ,um}, for 1 ≤ m < n, apply the
Gram-Schmidt process to

w1 = u1, . . . wm = um, wm+1 = e1, . . . wm+n = en

◦ note: this set of m + n vectors does indeed span Cn!
◦ the first m steps of G.-S. are trivial, but after that there will be discarded

vectors because ‖ṽ‖ = 0
◦ result is ON set {vi}n

i=1 where first m vectors were given

as matrices, if Q̂ has ON columns then we extend to a unitary matrix:

Q̂ =

 u1 . . . um

 → Q =

 u1 . . . um vm+1 . . . vn



Ed Bueler (MATH 617) Finite-dimensional spectral theory Spring 2020 14 / 26



eigenvalues and eigenvectors

definition. given a square matrix A ∈ Cn×n, v ∈ Cn is an eigenvector if
v 6= 0 and if there exists λ ∈ C so that

Av = λv

◦ λ is the eigenvalue for v
◦ idea: A acts in a simple way on (multiples of) v , simply by scaling

definition. the spectrum σ(A) of A ∈ Cn×n is the set of its eigenvalues
lemma. λ ∈ σ(A) if and only if det(λI − A) = 0

proof. λ ∈ σ(A) ⇐⇒ ∃ nonzero soln. to (λI−A)v = 0 ⇐⇒ det(λI−A) = 0

corollary. σ(A) is nonempty
proof. p(λ) = det(λI − A) is a degree n polynomial, which has a root λ ∈ C
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hermitian matrices and their eigenvalues

general facts about adjoints:
◦ (AB)∗ = B∗A∗

◦ in usual inner product 〈v ,w〉 = v∗w : 〈v ,Aw〉 = 〈A∗v ,w〉
definition. A ∈ Cn×n is hermitian if A∗ = A
◦ also called self-adjoint
◦ aij = aji . . . so the diagonal entries of A are real
◦ in usual inner product 〈v ,w〉 = v∗w : 〈v ,Aw〉 = 〈Av ,w〉
◦ if A has real entries then A> = A, and A is symmetric

lemma. if A is hermitian and λ ∈ σ(A) then λ is real
proof. a classic exercise . . . for you

lemma. if A is hermitian and v ,w ∈ Cn are eigenvectors associated to
distinct eigenvalues then v ,w are orthogonal

proof. a classic exercise: if Av = λv and Aw = µw then λ, µ are real so

(λ−µ) 〈v ,w〉 = 〈λv ,w〉−〈v , µw〉 = 〈Av ,w〉−〈v ,Aw〉 = 〈v ,Aw〉−〈v ,Aw〉 = 0,

and we have assumed λ− µ 6= 0
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eigendecompositions

for any A ∈ Cn×n, if v1, . . . , vm are eigenvectors with eigenvalues
λ1, . . . , λm then we can collect the statements Avi = λivi as

A

 v1 . . . vm

 =

 v1 . . . vm


λ1

. . .
λm


equivalently:

AV = V Λ

if V is square and invertible then we have a decomposition of A:

A = V ΛV−1

why does this matter? often A is iterated, or a polynomial is applied,

Ak = (V ΛV−1)k = V ΛV−1V ΛV−1 . . .V ΛV−1 = V Λk V−1

p(A) = V p(Λ)V−1

◦ Λk , p(Λ) are easy-to-understand diagonal matrices
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similarity and diagonalizability

definition. A,B are similar if there exists V invertible so that

A = VBV−1

lemma. if A,B are similar then σ(A) = σ(B)

proof. noting det(TS) = det(T ) det(S), we have

det(λI − A) = det(λVV−1 − VBV−1) = det(V ) det(λI − B) det(V−1)

= det(V ) det(λI − B) det(V )−1 = det(λI − B)

lemma. if A is triangular or diagonal then σ(A) = {aii} (diagonal entries)
proof. det(λI − A) =

∏n
i=1 λ− aii

definition. A is diagonalizable if there exists V invertible and Λ diagonal
so that

A = V ΛV−1

◦ equivalently, A is diagonalizable if it is similar to a diagonal matrix
◦ not every square matrix is diagonalizable!
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non-diagonalizable (“defective”) matrices

if you pick a matrix A ∈ Cn×n at random then it will be diagonalizable with
probability one,3 but non-diagonalizable matrices exist

simplest example (check all this!): A =

[
0 1
0 0

]
◦ note A is triangular, and σ(A) = {0}
◦ if A = V ΛV−1 for V invertible then columns of V would be

linearly-independent eigenvectors: Av1 = 0v1 and Av2 = 0v2

◦ but in fact (λI − A)v = 0 has only a one-dimensional solution space
all non-diagonal examples A are built by choosing J to be a “non-diagonal
Jordan form,” with at least one block of this form on the diagonal:

[
λ 1
0 λ

]
,

λ 1 0
0 λ 1
0 0 λ

 ,

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 , . . . ,

and with J otherwise diagonal, and defining A = VJV−1 for some
invertible V

3 this assumes only that your probability measure has a continuous density with respect to Lebesgue measure
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eigenvalue-revealing decompositions

there are four famous “eigenvalue-revealing” decompositions of square
matrices A ∈ Cn×n:

A = V ΛV−1 if A is diagonalizable

A = VJV−1 for any A, where J is special triangular Jordan form

A = QΛQ∗ if A is hermitian, where Q is unitary
A = QTQ∗ for any A, where T is triangular and Q is unitary

respectively: MATLAB commands
A = V ΛV−1 is eigendecomposition or diagonalization eig(A)
A = VJV−1 is Jordan canonical form
A = QΛQ∗ is spectral theorem eig(A)
A = QTQ∗ is Schur decomposition schur(A,’complex’)

the Jordan canonical form cannot be computed if rounding errors exist4

the Schur decomposition is the most important in practice, as it always
exists and it can be stably computed over R or C

4G. Golub & J. Wilkinson 1976, Ill-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Review 18(4), 578–619
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Schur decomposition

theorem. if A ∈ Cn×n then there exist T ,Q ∈ Cn×n, with T
upper-triangular and Q unitary, so that

A = QTQ∗

proof. Induct on n. If n = 1 then the result follows with T = A = [a11] and Q = I = [1].
For n > 1 let v 6= 0 be an eigenvector of A, with eigenvalue λ. Let u1 = v/‖v‖ and

extend to a unitary matrix:

U =

 u1 u2 . . . un


Apply A and note that Au1 = λu1:

AU =

 λ1u1 Au2 . . . Aun


Apply U∗ = U−1, observe that U∗Au1 = λ1U∗u1 = λ1e1, and write wj = U∗Auj :

U∗AU =

 λ1e1 w2 . . . wn


(We don’t care about the form of the vectors w2, . . . ,wn ∈ Cn.)
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Schur decomposition, proof cont.

We have made progress toward upper-triangular form. In fact, we may write

U∗AU =

[
λ1 z∗

0 M

]
for some z ∈ Cn−1 and M ∈ Cn−1×n−1. By induction, M has a Schur decomposition,
M = Q̂T̂ Q̂∗, where T̂ , Q̂ are the same size as M. Note that[

1 0
0 Q̂

]
is unitary. Now we can transform the whole matrix U∗AU to triangular form:[

1 0
0 Q̂∗

]
U∗AU

[
1 0
0 Q̂

]
=

[
λ1 z∗Q̂
0 T̂

]
Now let

T =

[
λ1 z∗Q̂
0 T̂

]
, Q = U

[
1 0
0 Q̂

]
We have A = Q∗TQ.

note key steps at start of proof: “let v 6= 0 be an eigenvector of A” and
“extend to a unitary matrix”
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Schur decomposition: computed examples

note the diagonal entries of T contain the eigenvalues (compare eig(A))
example 1: general case
>> A=randn(4,4);
>> [Q,T] = schur(A)
Q =
0.25290 0.78457 -0.32111 0.46624
0.12587 0.07899 -0.70892 -0.68945
-0.82852 0.47758 0.15009 -0.25088
-0.48348 -0.38746 -0.60974 0.49431

T =
1.94208 -1.22908 -1.37600 -0.70166
0.00000 -1.81581 0.21700 -0.51769
0.00000 0.00000 0.69477 -1.15766
0.00000 0.00000 0.00000 -0.59708

>> norm(A-Q*T*Q’)
ans = 2.0928e-15

◦ we just got lucky; see help schur for real vs. complex Schur decompositions

example 2: hermitian case
>> B = randn(4,4); A = B + B’;
>> [Q,T] = schur(A); T
T =
3.42692 -0.00000 -0.00000 -0.00000
0.00000 0.96497 0.00000 -0.00000
0.00000 0.00000 -2.92548 0.00000
0.00000 0.00000 0.00000 -4.61828
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normal matrices

lemma. if A is hermitian then the Schur decomposition is a unitary
diagonalization

proof. A∗ = A so QT ∗Q∗ = QTQ∗ so T ∗ = T

there is a larger class of matrices where this happens
definition. A ∈ Cn×n is normal if AA∗ = A∗A
examples:
◦ A hermitian =⇒ A normal
◦ U unitary =⇒ U normal
◦ S skew-hermitian5 =⇒ S normal

5S∗ = −S
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the spectral theorem

corollary (spectral theorem). if A is normal then there exists Λ diagonal
and Q unitary so that

A = QΛQ∗

proof. From the Schur decomposition, A = QTQ∗. Since A is normal, it follows that
TT ∗ = T ∗T . But T is upper-triangular, so

T =

[
t11 z∗

0 R

]
where R is also upper triangular. An easy calculation shows
(TT ∗)11 = |t11|2 + ‖z‖2 while (T ∗T )11 = |t11|2. Thus z = 0. Now induct to
show T is diagonal.
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where we stand

in part II we will discuss consequences of the spectral theorem
. . . and get to the singular value decomposition
almost everything we do will have some kind of analog in∞-dimensions
. . . and appear somewhere in our textbook6

. . . but most proof steps do not extend directly to∞-dimensions
questions. in an∞-dimensional Hilbert space,
◦ what is the meaning of “span” and “basis”?
◦ are matrices meaningful?
◦ is a one-to-one linear operator invertible?
◦ does the Gram-Schmidt process work as before?
◦ does every linear operator have an eigenvector?
◦ is there a Schur decomposition of every linear operator?
◦ is there a spectral theorem of hermitian or normal operators?

6Muscat, Functional Analysis; see Chapter 10 for Hilbert spaces
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