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linear algebra versus functional analysis

@ these slides are about linear algebra, i.e. vector spaces of finite
dimension, and linear operators on those spaces, i.e. matrices
@ one definition of functional analysis might be: “rigorous extension of
linear algebra to co-dimensional topological vector spaces”
o itis important to understand the finite-dimensional case!
@ the goal of these part | slides is to prove the Schur decomposition and the
spectral theorem for matrices
@ good references for these slides:
o L. Trefethen & D. Bau, Numerical Linear Algebra, SIAM Press 1997
o G. Strang, Introduction to Linear Algebra, 5th ed., Wellesley-Cambridge
Press, 2016

o G. Golub & C. van Loan, Matrix Computations, 4th ed., Johns Hopkins
University Press 2013
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the spectrum of a matrix

>>
>>
>>
>>
>>
>>

@ the spectrum o(A) of a square matrix A is its set of eigenvalues

o reminder later about the definition of eigenvalues
o o(A) is a subset of the complex plane C

o the plural of spectrum is spectra; the adjectival is spectral

@ graphing o(A) gives the matrix a personality

o example below: random, nonsymmetric, real 20 x 20 matrix

A = randn(20,20);

lam = eig(A);

plot (real (lam), imag(lam),’
grid on

xlabel (' Re (\lambda)’)
ylabel ( Im(\lambda)’)
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C" is an inner product space

@ we use complex numbers C from now on

o why? because eigenvalues can be complex even for a real matrix
o recall: if « = x + iy € C then @ = x — iy is the conjugate
@ let C" be the space of (column) vectors with complex entries:

Vi

o
@ definition. an inner product on C" is a function
(,):C"xC"—=C,

almost-bilinear (sesquilinear'), with symmetry and positivity properties
@ namely, for all u,v,w € C" and a € C,
(w,u+v) =(w,u) +(w,v)
(U,av) = a (U, v)
(u,v) = (v, u)
(

u,uy > 0,and (u,uy =0ifandonlyifu=0

O O O O

1 kind of a joke, as it means “1 % linear”
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norm and adjoint vector

@ the inner product is conjugate-linear in its first position:
o (Ut v, w) =W, u+ V)= (w,u)+(w,Vv)=(Uw)+(v,w)
o {au,Vv) = (v,au) =a(v,u) =au,v)
@ definition. an inner product (-, -) induces a norm || - || : C" — R:

Jull = V{u, u)

@ the hermitian transpose (adjoint) of a vector v € C" is the row vector
v =[vq,..., Vg

@ the usual inner product is just a matrix product on C™:

Vi
W) =uv =[G - T
Vn
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linear-dependence, span, basis

@ definition. a (finite) set of vectors {v;}", C C" is linearly-dependent if
there exist scalars «; € C, not all zero, sothat aqvy +--- +amVm =0
o a set of vectors is linearly-independent if it is not linearly-dependent
o vectors in a linearly-independent set are nonzero
@ definition. a finite set of vectors {v;}", span C" if for any w € C" there
exist scalars o sothat w = aqv4 + - - - + amVm
@ lemma.?
o if {v;}[2y C C"is linearly-independent then m < n
o if {vi}’y C C" spans C"thenm > n
@ definition. a finite set of vectors {v;}", C C" is a basis if the set is
linearly-independent and it spans C”
o bythelemma, m=n
o the dimension nis well-defined as the number of elements in a basis

2https://en.wikipedia.org/wiki/Steinitz_exchange_lemma
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linear operators and matrices

@ definition. A: C" — C"is linear if A(au + Bv) = aA(u) + BA(V)
o we call such a function a linear operator and we write Au = A(u)

@ given a basis, one may represent a linear operator as a (square) matrix
o matrix multiplication is just function composition

@ definition. Ais invertible if there exists B so that AB= BA=1
@ lemma. matrix A is invertible if and only if its columns form a basis
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meanings of matrix multiplication

@ the “purpose” of a matrix A € C"™ ™ is to multiply vectors u € C™

o a matrix is merely the representation of a linear operator
o operations on entries, e.g. det() or row operations, are less fundamental

@ when you see “Au” remember two views:

r rul
1) nu
Au = . u=
L I'n U]
_ o |
uz
Au= | a |a|... | am Ll =wla| FUe a4+ Un | @m
L S

o A acts on u acts from the left; each entry is an inner product
o u acts from the right on A; get a linear-combination of columns

@ also: if A€ C™"is invertible then A~'w computes the coefficients of w in
the basis of columns of A
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adjoints, orthonormal bases, and unitary matrices

@ definition. the hermitian transpose or adjoint of A € C"™ ™ is A* € C™*"™:

a1 a2 ... aim apnr  a

do1  dop am . a2 a»
A= . ) . — A=

an1 anp2 .. anm aim azm

@ definition. a basis {v;}_, of C" is orthonormal (ON) if

1, i=j
Vi, Vj) = ViV =05 = o
(vi, vj) | = 0j {07 oy

o “ortho” means (v;, v;) = 0if i # j and “normal” means ||v;|| = 1
@ definition. a matrix U is unitary if U*U = I, thus U~ = U*

ani
anz

anm

@ lemma. a matrix U is unitary if and only if its columns form an ON basis

proof. The entries of a matrix product are inner products between the rows of the
left factor and the columns of the right factor. The entries of / are §;.
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Gram-Schmidt process

@ given a set of vectors {w;}", C C” we can generate new orthonormal
vectors which span the same subspace

o if the original set spans C" then the result is an ON basis
o formulas:

V= 4} — Vi :\N//HV”
V=ws— (vi,m) vy — vo = V/[|V|
V=ws— (vi, W) Vi — (V2,W3) Vo — va = V/||V||
V=wy— (vi,wg) vy — (vo,Ws) Vo — (Va, Wa) V3 — vy = V/||V

o exception: if ¥ = 0 at any stage then we ignore that w; and skip to w4
o notice the triangular structure

@ lemma.
o {v} is ON
o span{v} = span{w;}
o if {w;}/_; spans C", thus m > n, then {v;}/_ is an ON basis
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Gram-Schmidt is QR

@ the Gram-Schmidt formulas are of the form
i—1
iV = W — Zﬁji‘/j
j=1
where a; = ||V|| is a normalization constant and 3; = (v;, w;)
@ moving the v; to the left in %, and writing vectors as columns gives

ar Pz Pz .. Bim
0 o a3 Bam
V4 Vo Vm . . B = 4] Wo - Wn
0 o ... am
@ this is a “reduced” QR decomposition
QR=A

o ,f\ is n x m and contains the original vectors w;,
o Qis tAhe same size as A and contains the ON vectors v;,
o and Ris (upper-) right-triangular and m x m, thus small if m < n

@ if m = nand columns of A span C” (A has full rank) then Q is unitary
@ methods: numerical QR uses Householder, not Gram-Schmidt, for stability reasons
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Gram-Schmidt process: example 1

@ suppose we have m = 3 vectors in C3:

] )~

@ applying the formulas on slide 10:

0.87416 —0.48456 —0.03247
vi= 1029139, w=| 046984 |, v;= | 0.83327
0.38851 0.73787 —0.55191

@ compare this MATLAB calculation:
> A =[916; 36717; 49 31;
>> [Q,R] = qgr(A)

Q:
-0.87416 0.48456 0.032465
-0.29139 -0.46984 -0.83327
-0.38851 -0.73787 0.55191

R =
-10.296 -6.1191 -8.4502
0 -8.9753 -2.5952
0 0 -3.9824
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Gram-Schmidt process: example 2

@ what is this MATLAB calculation doing?:

>> x = (=1:.01:1)";

>> A = [x.70 x."1 x.72 x."3 x.%4];
>> size (A)
ans =

201 5

>> [Q,R] = qr(a,0);
>> size (Q)
ans =
201 5 01
>> plot (x,Q), xlabel x

>> axis tight, grid on \ 7

0.1 [

-0.2
-1 -0.5 0 0.5 1
X

@ the plot shows Legendre polynomials up to degree 4
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technique: extend to an ON basis

@ a key technique, for proofs related to spectral theory, is to extend m < n
ON vectors to an ON basis

@ let {g}] be the standard basis of C", with (e;); = J;
@ method. given ON vectors {uy,..., Uy}, for 1 < m < n, apply the
Gram-Schmidt process to
W1:U1, “ee Wm:Um, Wm+1:e17 e Wm+n:en

o note: this set of m + n vectors does indeed span C"!

o the first m steps of G.-S. are trivial, but after that there will be discarded
vectors because ||V|| =0

o resultis ON set {v;}{_; where first m vectors were given

@ as matrices, if Q has ON columns then we extend to a unitary matrix:
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eigenvalues and eigenvectors

@ definition. given a square matrix A € C"™", v € C" is an eigenvector if
v # 0 and if there exists \ € C so that

Av = Av
o \is the eigenvalue for v
o idea: A acts in a simple way on (multiples of) v, simply by scaling
@ definition. the spectrum o(A) of A € C™" is the set of its eigenvalues
@ lemma. )\ € o(A) if and only if det(A\/ — A) =0
proof. A € 0(A) < 3Jnonzerosoln.to (A\/—A)v =0 < det(A\[—A)=0

@ corollary. o(A) is nonempty
proof. p(\) = det(Al — A) is a degree n polynomial, which has a root A € C
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hermitian matrices and their eigenvalues

@ general facts about adjoints:

o (AB)* = B*A*

o in usual inner product (v, w) = v*w: (v, Aw) = (A"v,w)
@ definition. A € C™" is hermitian if A* = A

o also called self-adjoint

o aj = a; ...so the diagonal entries of A are real

o in usual inner product (v, w) = v*w: (v, Aw) = (Av, w)

o if Ahas real entries then AT = A, and A is symmetric
@ lemma. if Ais hermitian and X € o(A) then X is real
proof. a classic exercise ... for you

@ lemma. if Ais hermitian and v, w € C" are eigenvectors associated to
distinct eigenvalues then v, w are orthogonal

proof. a classic exercise: if Av = A\v and Aw = uw then A,  are real so

(A=p) (v, w) = v, w)—(v, uw) = (Av, w)—(v, Aw) = (v, Aw)—(v, Aw) = 0,

and we have assumed A — 4 # 0
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eigendecompositions

@ forany Ae C™" if vy,..., vy are eigenvectors with eigenvalues
M, ..., Am then we can collect the statements Av; = \;v; as
M
A[w vm][w vm]
Am

@ equivalently:
AV = VA

@ if V is square and invertible then we have a decomposition of A:
A= VAV
@ why does this matter? often A is iterated, or a polynomial is applied,
A= (VAV DK = VAVTTVAV=T VAV = VARV !
p(A) = Vp(\)V'

o AX, p(A) are easy-to-understand diagonal matrices
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similarity and diagonalizability

@ definition. A, B are similar if there exists V invertible so that
A= VvBv~!

@ lemma. if A, B are similar then o(A) = o(B)
proof. noting det(TS) = det(T) det(S), we have

det(A\l — A) = det(AVV ™" — VBV ") = det(V) det(A/ — B) det(V ")
= det(V)det(\ — B) det(V) ™" =det(A\ — B) [

@ lemma. if Ais triangular or diagonal then o(A) = {a;} (diagonal entries)

proof. det(M — A) =T, A — ai O
@ definition. A is diagonalizable if there exists V invertible and A diagonal
so that
A= VAV~!

o equivalently, A is diagonalizable if it is similar to a diagonal matrix
o not every square matrix is diagonalizable!
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non-diagonalizable (“defective”) matrices

@ if you pick a matrix A € C™" at random then it will be diagonalizable with
probability one,® but non-diagonalizable matrices exist

e simplest example (check all this)): A= [g 8}

o note Ais triangular, and o(A) = {0}

o if A= VAV~ for V invertible then columns of V would be
linearly-independent eigenvectors: Avy = Ovy and Avz = Ov,

o butin fact (A\/ — A)v = 0 has only a one-dimensional solution space

@ all non-diagonal examples A are built by choosing J to be a “non-diagonal
Jordan form,” with at least one block of this form on the diagonal:

A1 0 0
A 6\1? 00A 1 0
o A |22 1 oo a1
00 0 A

and with J otherwise diagonal, and defining A = VJV~' for some
invertible V

3this assumes only that your probability measure has a continuous density with respect to Lebesgue measure
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eigenvalue-revealing decompositions

@ there are four famous “eigenvalue-revealing” decompositions of square
matrices A € C"™":
A= VAV~' if Ais diagonalizable
A=Wy for any A, where J is special triangular Jordan form

A= QAQ* if A is hermitian, where Q is unitary
A=QTQ" for any A, where T is triangular and Q is unitary

@ respectively: MATLAB commands
A= VAV~ is eigendecomposition or diagonalization eig(n)
A = VJV~'is Jordan canonical form
A = QAQ" is spectral theorem eig(a)
A = QTQ" is Schur decomposition schur (A, ' complex’)

@ the Jordan canonical form cannot be computed if rounding errors exist*

@ the Schur decomposition is the most important in practice, as it always
exists and it can be stably computed over R or C

4G. Golub & J. Wilkinson 1976, lll-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Review 18(4), 578-619
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Schur decomposition

@ theorem. if A € C"™<" then there exist T, Q € C"™" with T
upper-triangular and Q unitary, so that

A=QTQ*

proof. Induct on n. If n =1 then the result follows with T = A = [ayy] and Q = | = [1].
For n > 1 let v # 0 be an eigenvector of A, with eigenvalue X. Let uy = v/||v|| and
extend to a unitary matrix:
U= [ Uy Un }

Apply A and note that Auy; = Auy:
AUn :|
Apply U* = U1, observe that U*Au; = A\ U*uy = \jeq, and write w; = U*Au;:

Wn}

(We don’t care about the form of the vectors wa, ..., w, € C".)

AU = |: Aup | Aup

U*AU = |: A1 €4 Wo
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Schur decomposition, proof cont.

We have made progress toward upper-triangular form. In fact, we may write

* . A z*
UAU_[0 M}

for some z € cn-1 and M € Cnr—1xn=1_By induction, M has a Schur decomposition,
M = QTQ*, where T, Q are the same size as M. Note that

5]

is unitary. Now we can transform the whole matrix U* AU to triangular form:

1] 0 ; 1101 [ am[z0
{oo*]“AU{oo}[o T

r:{g Z’;@] a=u[+H]

We have A = Q*TQ. O

Now let

@ note key steps at start of proof: “let v # 0 be an eigenvector of A” and
“extend to a unitary matrix”
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Schur decomposition: computed examples

@ note the diagonal entries of T contain the eigenvalues (compare eig (2))
@ example 1: general case

>> A=randn (4,4);

>> [Q,T] = schur (A)
Q=
0.25290 0.78457 -0.32111 0.46624

0.12587 0.07899 -0.70892 -0.68945
-0.82852 0.47758 0.15009 -0.25088
-0.48348 -0.38746 -0.60974 0.49431

T =
1.94208 -1.22908 -1.37600 -0.70166
0.00000 -1.81581 0.21700 -0.51769
0.00000 0.00000 0.69477 -1.15766
0.00000 0.00000 0.00000 -0.59708

>> norm (A-QxT*Q’)
ans = 2.0928e-15

o we just got lucky; see help schur for real vs. complex Schur decompositions

@ example 2: hermitian case
>> B = randn(4,4); A =B + B’;
>> [Q,T] = schur(d); T

T =
3.42692 -0.00000 -0.00000 -0.00000
0.00000 0.96497 0.00000 -0.00000
0.00000 0.00000 =-2.92548 0.00000
0.00000 0.00000 0.00000 -4.61828

Ed Bueler (MATH 617) Finite-dimensional spectral theory Spring 2020 23/26



normal matrices

@ lemma. if A is hermitian then the Schur decomposition is a unitary
diagonalization

proof. A* =Aso QT"Q*=QTQ*so T* =T

@ there is a larger class of matrices where this happens
@ definition. A € C™"is normal if AA* = A*A

@ examples:

o Ahermitian = A normal
o U unitary =— U normal
o S skew-hermitian® = S normal

5g_ _g
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the spectral theorem

@ corollary (spectral theorem). if A is normal then there exists A diagonal
and Q unitary so that
A= QAQ*

proof. From the Schur decomposition, A = QTQ*. Since A is normal, it follows that
TT* = T*T. But T is upper-triangular, so

]z
7= ]

where R is also upper triangular. An easy calculation shows

(TT*)11 = |ti1]2 + || z||? while (T*T)11 = |t1/?. Thus z = 0. Now induct to
show T is diagonal. O
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where we stand

@ in part Il we will discuss consequences of the spectral theorem

@ ...and get to the singular value decomposition

@ almost everything we do will have some kind of analog in co-dimensions
@ ...and appear somewhere in our textbook®

@ ...but most proof steps do not extend directly to co-dimensions

@ questions. in an co-dimensional Hilbert space,

what is the meaning of “span” and “basis”?

are matrices meaningful?

is a one-to-one linear operator invertible?

does the Gram-Schmidt process work as before?

does every linear operator have an eigenvector?

is there a Schur decomposition of every linear operator?

is there a spectral theorem of hermitian or normal operators?

O O 0O O O O O

8Muscat, Functional Analysis; see Chapter 10 for Hilbert spaces
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