Consequences of the Baire theorem

XXX YYY

March 29, 2020

XXX YYY

Definition

if (X, d) is a metric space and $S \subset X$ then we say S is *nowhere dense* if the closure \overline{S} contains no (positive radius) balls

• equivalently, the interior of the closure $(\overline{S})^{\circ}$ is empty

Theorem (Baire 1899)

a nonempty complete metric space is not a countable union of nowhere dense sets

- that is, if (X, d) is complete and $X = \bigcup_{n=1}^{\infty} A_n$ then there exists a subset A_n whose closure contains a ball: $B_r(x) \subset \overline{A_n}$ for $x \in X$ and r > 0
- the proof of the Baire theorem requires the axiom of choice

CONTENT

• IT IS OFTEN GOOD TO USE ITEMS FOR SLIDES