
Math 615 Numerical Analysis of Differential Equations (Bueler) April 12, 2017

Show and tell with PETSc (revised/actual)

What is PETSc? It is the Portable, Extensible Toolkit for Scientific computing, an open and
free C library of numerical software:

http://www.mcs.anl.gov/petsc/
PETSc co-evolved with MPI (= Message Passing Interface), also from the Dept. of En-

ergy’s Argonne National Laboratory, starting in about 1990, as the fundamental infras-
tructure for doing science and engineering simulations/computations on the then-new
generation of multiple-instruction-multiple-data (MIMD) supercomputers. That is, MPI
and PETSc are core “software stack” for parallel computation on supercomputers, the
largest of which have (circa 2017) about 106 processors (cores).

I am in the midst of writing a book, at the graduate level for computational mathemat-
ics, called PETSc for Partial Differential Equations. With luck it will be published by SIAM
Press in 2018. The C codes for the book’s examples are here:

https://github.com/bueler/p4pdes

Two examples from my book.

1. A pair of coupled diffusion-reaction equations, which generate patterns, on (x, y) ∈
(0, 2.5)× (0, 2.5) and t > 0:

ut = Du∇2u− uv2 + φ(1− u)
vt = Dv∇2v + uv2 − (φ+ κ)v

where Du, Dv, φ, κ are constants. An example run of the C/PETSc code:
$ cd c/ch5/ && make pattern
$ mpiexec -n 4 ./pattern -da_refine 5 -ts_monitor -snes_monitor \

-ts_dt 10 -ts_final_time 5000 -ts_adapt_type none \
-ts_type beuler -ts_monitor_solution draw

The initial condition is four dots in the middle. The spatial derivatives are ap-
proximated with a 9-point-stencil version of the usual centered finite difference
scheme. The time-stepping is Backward Euler, but it could be the trapezoid rule
or an adaptive explicit scheme, etc., as chosen at run-time.

2. The advection equation on (x, y) ∈ (−1, 1)× (−1, 1) and t > 0:

ut +∇ · (au) = 0

where a(x, y) = (2y,−2x). An example run of the C/PETSc code:
$ cd c/ch9/ && make advect
$ mpiexec -n 4 ./advect -da_refine 4 -ts_monitor_solution draw -ts_monitor \

-ts_rk_type 2a -adv_problem rotation -ts_final_time 3.1415926

The initial condition u(x, y, 0) would look like a cone and a square tower if you
did a surface plot. The spatial derivatives are approximated with finite differences
and a “flux-limiting upwind scheme.” The time-stepping is by RK2, which is quite
suitable for such hyperbolic problems. The time-dependent solution rotates the
initial picture. We see that numerical diffusion causes the sharp edges to smooth
out.

http://www.mcs.anl.gov/petsc/
https://github.com/bueler/p4pdes

