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Basics of the stability of ODE schemes

To address stability of ODE schemes we apply them to the simplest ODE, namely

du

dt
= Cu,

where u(t) is a function of a single variable, of course. We examine when the scheme generates
exponentially-decaying, or at least not exponentially-growing, solutions. By definition, the sta-
bility region is the region of the relevant complex plane (see below) where the scheme generates
non-growing solutions.

Consider the two simplest schemes

Un+1 − Un

∆t
= CUn, forward Euler

Un+1 − Un

∆t
= CUn+1. backward Euler

written as simplified difference equations,

Un+1 =
(

1 + C∆t
)
Un, forward Euler

Un+1 =

(
1

1− C∆t

)
Un. backward Euler

We analyze stability by substituting an exponential solution Un = (λ)n and asking if it grows
or decays. Note there is no spatial frequency k, so this analysis is simpler than von Neumann
analysis of PDE schemes. Just as with the von Neumann analysis, the question is whether |λ| ≤ 1.

In terms of the key parameter

z = C∆t,

we get these equations for λ after substituting:

λ = 1 + z, forward Euler

λ =
1

1− z
. backward Euler

We consider complex z = a+ ib because ODE schemes are often applied to second-order ODEs1

which have complex exponential solutions, i.e. cosines and sines as solutions.
For forward Euler we have

|λ| ≤ 1 ⇐⇒ |1 + z|2 ≤ 1 ⇐⇒ (a+ 1)2 + b2 ≤ 1.

That is, in the z = a+ ib complex plane, the stable values of z = C∆t are the ones that are inside
a circle of radius one centered at the point −1 + 0i. This “stability region” is show in Figure 1.

For backward Euler, z = C∆t = a+ ib must satisfy

|λ| ≤ 1 ⇐⇒ 1 ≤ |1− z|2 ⇐⇒ 1 ≤ (a− 1)2 + b2.

That is, z must be outside of a circle of radius one centered at 1 + 0i, as show in Figure 1.
Regarding the relation to PDEs, consider the heat equation. From Fourier series solutions of

the heat equation we know it acts like a lot of ODEs which are essentially du/dt = Cmu where
Cm is different for each Four mode m = 1, 2, . . . (e.g. sin(mπx) for our standard heat problem).

1These are usually written as first-order systems of ODEs.
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Figure 1. Stability regions of the complex z plane for forward Euler (left) and
backward Euler (right) methods. The shaded region is where z = C∆t gives a
stable solution.

Specifically Cm is a multiple of −m2 (e.g. Cm = −π2m2 for our standard heat problem). Thus
we care about z = C∆t values which are on the negative real axis in the complex plane, and they
are arbitrarily far along that axis.

These heat equation z-values are all inside the stability region for the backward Euler method,
which is one way to describe or derive the unconditional stability of the implicit scheme. For the
explicit scheme, by shortening the time step enough we can get all the z values which correspond
to modes on the grid inside the stability region; this is conditional stability.

There are other ODE schemes than Euler and backwards Euler, of course. For example there
is the Runge-Kutta order 2 scheme which, for the ODE dy/dt = f(t, y) can be written yn+1 =
yn + ∆t f

(
tn + 1

2∆t, yn + 1
2∆t f(tn, yn)

)
. When applied to du/dt = cu this scheme simplifies to

Un+1 =
(
1 + z + 1

2z
2
)
Un where z = C∆t. Its stability region is shown in Figure 2, along with

the regions for the Euler method and Runge-Kutta methods of orders 3 and 4; the order 2 and 4
methods are used a lot while the order 3 method is rarely used.
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Figure 2. Stability regions of the complex z = C∆t plane for Runge-Kutta
methods of order 1 through 4. Regions inside the curves are stable.


