
Math 615 Numerical Analysis of Differential Equations (Bueler) January 29, 2014

Assignment #2

Due Friday, 7 February 2014.

Read sections 2.2, 2.3, 2.4, 2.5 and 2.6 of Morton & Mayers, 2nd ed.

1. Suppose that f and its derivatives f ′, f ′′, and f ′′′ are continuous on an interval

around x. Suppose also that there is M ≥ 0 so that |f ′′′(y)| ≤ M for all y in this

interval. Use n = 2 Taylor’s theorem with remainder to compute f(x+2h) and f(x+h).

From these, show carefully that∣∣∣∣f ′(x)− −3f(x) + 4f(x+ h)− f(x+ 2h)

2h

∣∣∣∣ ≤ 2Mh2.

This inequality tells us the accuracy of the “one-sided” finite difference approximation

f ′(x) ≈ −3f(x) + 4f(x+ h)− f(x+ 2h)

2h
.

Compare what we know about this one-sided method to what we know about the centered

formula

f ′(x) ≈ f(x+ h)− f(x− h)

2h
which has been considered in lecture.

2. Write a Matlab program which applies explicit scheme (2.19), in Morton &

Mayers on page 11, to solve the following heat equation problem:

ut = Kuxx for t > 0, 0 < x < L,

u(0, t) = A for t > 0,

u(L, t) = B for t > 0,

u(x, 0) = G(x) for 0 < x < L.

Unlike (2.7)–(2.9) it has nonzero (nonhomogeneous) Dirichlet boundary conditions A and

B, a coefficient K > 0, and an x-interval of arbitrary length L. Note I would recommend

that you change (2.20) to say

µ =
K∆t

(∆x)2
.

In particular, write a Matlab function which is called like this:

expscheme(J,L,N,tf,A,B,K,G)

where J is the number of x-subintervals, L is the length of the x-interval, N is the number

of time-steps, tf is the final time, and A,B,K,G are used in the heat equation problem

above. Turn in your code. To show it works, also turn in the plot of the solution at the

final time u(x, tf ), from the command

expscheme(20,3,100,2,1,-4,0.1,@(x) exp(-x))
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3. Do exercise 2.1 in Morton & Mayers (pages 56–57).

4. Reproduce Figure 2.2 in Morton & Mayers (page 13) using Matlab. Print your

resulting reproduction and turn in the program(s) that make it.

Commentary. Figure 2.2 shows solutions of problem (2.7)–(2.9) using initial

condition (2.24). It includes both the exact solution from the Fourier series

(2.11) and approximate solutions from the explicit scheme (2.19).

My suggestion when reproducing Figure 2.2 is to first write a program that

will plot a truncation of the exact solution (2.11). (This requires you know

the coefficients am, but see exercise 2.1.) Then write a different program to

compute the explicit approximation from scheme (2.19); see problem 2 above.

This second program will step forward using ∆t indicated in Figure 2.2; you

can fix ∆x = 0.05. Then display both the exact and approximate solutions as

in Figure 2.2, possibly in a third program which calls the first two programs.

Try to reproduce all the essential features of Figure 2.2. Use subplot and

also hold. Use the plot appearance option as in plot(x,y,’.-’); see help

plot.


