
Math 615 Numerical Analysis of DEs Bueler; May 3, 2014

Assignment #10, the Final Assignment
CORRECTED VERSION 4: SEE 2(d) AND 5(a) AND REVISED RULES

Due Wednesday 7 May, 2014. Please put in my Dept. of Mathematics and
Statistics (Chapman 101) box by 5:00pm.

REVISED Rules. You may use any reference, print or electronic, as long
as it is clearly cited, but you may not search out online or other complete
solutions to these particular problems, whether or not they exist. Please refer
specifically to equations (or ideas) in the textbook if that promotes clarity.

Choose either problem 3 or 4 or 5 to not do. They are equally-weighted.
Thus this assignment is worth a total of 75 points, about twice the usual value.

You may not talk or communicate about this exam with any person other
than me:

elbueler@alaska.edu 474-7693

Read sections 4.9, 4.11, 6.1, 6.2 of Morton & Mayers, 2nd ed. This assignment also relates
to material covered in earlier assignments.

1. For the advection PDE ut + a0ux = 0, with a0 constant, the Lax-Friedrichs scheme is

(∗)
Un+1
j − 1

2

(
Un
j−1 + Un

j+1

)
∆t

+ a0

Un
j+1 − Un

j−1

2∆x
= 0.

As you will see, this scheme has both some good properties and some surprisingly bad ones.
It is rarely used in isolation, but often used as a part of another scheme, Lax-Wendroff.

(a) 5 points. Show that the truncation error is T (x, t) = A∆t + B∆x2

∆t + C∆x2; identify the
values of A,B,C in terms of a0 and the derivatives of the exact solution u(x, t). (Hint: Use
Taylor’s theorem with remainder.)

(b) 5 points. By substituting von Neumann’s expression Un
j = λneik(j∆x), show that the

scheme is conditionally stable, with the condition being |ν| ≤ 1 where ν = a0∆t/∆x.

(c) 5 points. By subtracting the definition of truncation error from the scheme, and using the
standard definition enj = Un

j − u(xj , tn) for the error, show that the scheme converges along

the appropriate kind of refinement paths. (State any assumptions about the refinement path! )

(d) 5 points. Calculate an expression for the phase of a numerical mode in the Lax-Friedrichs
method. In particular, write down the analog of upwind formula (4.30) in Morton & May-
ers.

(e) 5 points. Modify my code
http://bueler.github.io/M615S14/upwindsquare.m

from the solutions to problem 2 on A#9, to create the Lax-Friedrichs version of Figure 4.6.
Because in this case the velocity a(x, t) is not constant, you should replace “a0” in equation (∗)
with “a(xj , tn)” when implementing the scheme. Describe the differences between the upwind
and the Lax-Friedrichs result on this particular advection problem.

http://bueler.github.io/M615S14/upwindsquare.m
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2. (This problem is a simplification of Exercise 4.10 on page 149 of Morton & Mayers.)
Consider the system of first-order PDEs

ρt + ux + vy = 0,(1a)

ut + c2ρx = 0,(1b)

vt + c2ρy = 0.(1c)

The solution of this system, subject to some initial and boundary conditions which do not
worry us in this problem, is a set of three functions ρ(x, y, t), u(x, y, t), and v(x, y, t). One
lesson of this problem is that you often see first-order (coupled) systems of PDEs like system
(1) which are hiding classical PDEs like the wave equation, namely equation (3) below.

Now, exercise 4.10 refers to a couple of different “staggered leap-frog” schemes for system
(1). Here is one of them: Suppose an equally-spaced grid of points (xj , yk, tn) with spacing
(h, h,∆t); this assumes h = ∆x = ∆y for simplicity. Suppose Rn

jk ≈ ρ(xj , yk, tn), Un
jk ≈

u(xj , yk, tn), V n
jk = v(xj , yk, tn). The “alternative” scheme is:
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(a) 5 points. Using three different colors (e.g. colored pens) for R,U, V , respectively, sketch
the stencil for the scheme (2) as a “three-dimensional” figure in (x, y, t) space. Also sketch the
projection of the stencil into the (x, y) plane and into the (x, t) plane. Do these by hand but
make them reasonably neat, and large enough; together your sketches should take up close to
one page. Label the points in your sketches clearly.

(b) 5 points. Show from (1) that

(3) ρtt = c2(ρxx + ρyy).

That is, show that if ρ, u, v together solve the system (1) then in fact ρ solves the second-order
wave equation (3). (Hint. Differentiate (1a) with respect to t. Then use equality of mixed
derivatives, and the other equations, to eliminate u and v.)

(c) 5 points. Show that if R,U, V solve the scheme (2) then R solves
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,

that is, the centered-time and centered-space scheme for (3); see also scheme (4.106). Sketch
the stencil for (4) and compare to the sketch in part (a).

(d) 5 points. CORRECTED! Do von Neumann stability analysis on (4). Specifically, by
substituting

Rn
jk = λneiqx(jh)eiqy(kh)

into (4), show that λ solves

λ2 + 2
(
2ν2

[
sin2(qxh/2) + sin2(qyh/2)

]
− 1
)
λ+ 1 = 0

where ν = c∆t/h. Then, by applying the result of exercise 2.6(i) in the textbook, show that
scheme (4) is conditionally-stable for PDE (3) if the CFL condition |ν| ≤ 1/

√
2 applies.
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3. Consider the advection-diffusion problem

(5) ut + aux = buxx

with particular constants a = 1 and b = 0.1. Observe that the basic method recommended
in section 2.15 would use the upwind scheme on the ux term and the centered-space scheme
on the uxx term to get a conditionally-stable explicit scheme. This problem describes a more
accurate version of that idea.

(a) 5 points. The MacCormack scheme for (5) is an explicit “predictor-corrector” scheme;
these words are also used to describe some ODE schemes. In the case above where a > 0 and
b > 0 are constant, the scheme is
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)
Note that the quantities Un+∗

j are “tentative” values at the new time tn+1. These tentative

values are then used in the corrector step to get the “true” values Un+1
j at the new time. Draw

separate stencils for the predictor and corrector steps; use clearly-labeled color or symbols as
needed to make the corrector step clear. What is the usual name for the predictor step?

(b) 10 points. Implement the MacCormack scheme using the initial condition

u(x, 0) = e−5(x−1)2

and boundary conditions u(0, t) = 0 and u(5, t) = 0 on the interval 0 ≤ x ≤ 5. In particular,
compute an approximation of u(x, t) at tf = 3. For runs with J = 50 and J = 200 subintervals,
and choosing ∆t so that

µ =
b∆t

∆x2
=

1

2
,

produce a plot of the initial and final U values. From these two runs, and possibly finer-grid
runs if needed, estimate

max
0≤x≤5

u(x, tf ),

providing some evidence that your value is accurate to 4 digits.1

(Extra Credit) For 4 points extra credit, do Exercise 5.4 from Morton & Mayers. For
another 4 points extra credit, find different initial and boundary conditions so that you do
know the exact solution of (5), and evaluate the measured error of the scheme. (Hint: These
are not easy points to get.)

1Since I don’t know the exact solution, I cannot advise on how to measure the error, but my intuition for

this problem is clear because I understand the advection (ut + aux = 0) and diffusion (ut = buxx) problems

separately.
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4. 15 points. Modify my code
http://bueler.github.io/M615S14/ftcs.m

to use the leap-frog scheme (4.90) or (4.91) on the problem already solved by ftcs.m, namely
ut − 2ux = 0 on −1 ≤ x ≤ 1 with initial condition u(x, 0) = sin(5x) + 1 and (upstream)
boundary condition u(1, t) = 0. Use t0 = 0 as the initial time and approximate u(x, tf ) at
tf = 0.99. Compare runs with J = 25, 50, 100, 200, 400. As leap-frog is conditionally-stable,
you will need to choose the time step in a clearly-explained manner. Because the leap-frog
scheme is a three-level scheme, a choice is needed to get started: You may use the exact
solution at t0 and the exact solution at t0 + ∆t. Make a convergence plot of the maximum
error maxj |UN

j − u(xj , tf )| versus ∆x, and comment on the apparent rate of convergence.

5. Sections 6.1 and 6.2 consider the Poisson equation

(6) uxx + uyy + f = 0

on a square, where f(x, y) is a given function, and where u = 0 on the boundary. This
problem asks you to consider a slightly more general problem: a rectangle instead of a square,
and nonzero boundary conditions.

(a) 5 points. CORRECTED! Consider the rectangle −1 ≤ x ≤ 1, 0 ≤ y ≤ 3. Show that
u(x, y) = x2 + sin(y) solves (6) with f(x, y) = sin(y)− 2 and boundary conditions

u(−1, y) = 1 + sin(y),

u(x, 0) = x2,

u(1, y) = 1 + sin(y),

u(x, 3) = x2 + sin(3).

Also explain, in a couple of sentences, how I generated this exact solution. (Hint. It is fine
to start your explanation with “You cheated by . . . ” But you still need to state clearly what
choice I made and then what I did.)

(b) 10 points. Write a code which uses the centered-space finite difference scheme to approx-
imately solve (6) with Jx = 60 equal spaces in the x-direction and Jy = 50 spaces in the
y-direction, so that ∆x 6= ∆y. Measure the error from your scheme on this one grid by apply-
ing it to the problem in part (a). Report the maximum value of the error (i.e. one number).
(Hint. In your solution, include a few hand-written equations to explain what your code does.
Of course I expect you to solve the linear system by A\b in Matlab.)

http://bueler.github.io/M615S14/ftcs.m

