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Definitions and Examples Thereof

I like our textbook Morton & Mayers, but sometimes I need to augment

it to improve understanding. On the first pass through this material it is a

good idea to have very clear definitions, but they are not displayed in the

text. Here I have pulled them out and put them on display. I have noted the

page(s) in Morton & Mayers, 2nd ed (2005) on which each definition

appears. This will be helpful to you in reviewing for the In-Class Midterm

Exam.

Definition 1 (pages 14 and 157). The (local) truncation error of a numerical scheme

at a point (x, t) is the amount by which the exact solution does not satisfy the scheme

at that point. In particular, if the PDE satisfied by the exact solution u is written

F (u) = 0, and if F̃ (U) = 0 is the equation satisfied by the discrete approximation U ,

then the truncation error is T = F̃ (u).

Example. We can write the standard heat equation as

ut − uxx = 0

and the explicit scheme as

(1)
Un+1
j − Un

j

∆t
−
Un
j+1 − 2Un

j + Un
j−1

∆x2
= 0.

Thus the truncation error is

T (x, t) =
u(x, t+ ∆t)− u(x, t)

∆t
− u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
.

Note the truncation error is a function of the point in the domain, and it generally

varies over the domain. In proofs of convergence, therefore, we usually consider the

worst case, the maximum over the truncation error.

Definition 2 (page 17). A refinement path is a sequence of positive mesh parameters

{(∆xi,∆ti)}, i = 1, 2, . . . , such that ∆xi → 0 and ∆ti → 0 as i→∞.

Example. A refinement path for the explicit scheme (1) might be

{(∆xi,∆ti) = ((0.2)i, (0.01)i)}, i = 1, 2, . . .

This happens to be a stable refinement path for the explicit schemer because ∆t/∆x2 =

(1/4)i ≤ 1/2. But the concept of stability does not enter into the definition of “re-

finement path.” For instance, {(∆xi,∆ti) = (0.1i, 0.1i)} is also a refinement path, and

the explicit method would show instability along it and not converge, but the implicit

method would be stable and converge along it.
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Definition 3 (pages 15 and 157). A numerical scheme is consistent (along a given

refinement path) if for any point (x, t) in the domain the truncation error goes to zero

along the refinement path. A numerical scheme is unconditionally consistent if the

truncation error goes to zero as the mesh sizes go to zero along any refinement path.

Example. The truncation error of the explicit scheme (1) for the heat equation turns

out to satisfy

|T (x, t)| ≤ 1

2
Mtt∆t+

1

12
Mxxxx∆x2,

where Mtt,Mxxxx are bounds on derivatives of the exact solution; see page 15. We learn

this inequality from Taylor’s theorem, of course. It follows that the explicit scheme is

unconditionally consistent. For instance, the truncation error goes to zero along either

of the paths mentioned in the previous example.

Example. Exercise 5.1 on page 190 describes an explicit three level scheme for the

equation ut + aux = buxx, called the DuFort-Frankel scheme, which is conditionally

consistent. That is, one has consistency only along some refinement paths.

Definition 4 (sort of defined on page 15). We say a numerical scheme has order (of

accuracy) “O(∆tp + ∆xq)” if there exist C1, C2 > 0 so that

|T (x, t)| ≤ C1∆tp + C2∆xq

for all x, t in the domain.

Example. In an example above we see that the explicit scheme has order O(∆t1 +

∆x2). The Crank-Nicolson scheme has order O(∆t2 + ∆x2) (section 2.10).

Because the spatial derivative approximations are the same in these two schemes it

makes sense, in the context of these two schemes, to say that the explicit scheme is

“first-order accurate” and that Crank-Nicolson is “second-order accurate,” but such

language should be used with care. The “O(∆tp+∆xq)” language communicates more.

Definition 5 (pages 20–21). Suppose we have a constant-coefficient finite difference

scheme F̃ (U) = 0 for a PDE which we write F (u) = 0. The scheme has solution

U = Un
j . Suppose Un

j = (λ)neik(j∆x) is a wave-like solution to the scheme with (spatial)

frequency k and growth/decay rate λ = λ(k). The finite difference scheme is condi-

tionally stable (i.e. stable along a refinement path) if there exists K > 0 independent

of k,∆t,∆x such that

|λ(k)n| ≤ K for all frequencies k and for all n such that n∆t ≤ tf

for all (∆x,∆t) on the refinement path. A finite difference scheme is unconditionally

stable if the above condition applies for every refinement path.

A more general definition of stability is given in Chapter 5 (see page 158), but we

do not use it till then.
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Lemma 6 (von Neumann; page 21). If there exists K ′ > 0 independent of k,∆t,∆x

such that

|λ(k)| ≤ 1 +K ′∆t

for all k and all (∆x,∆t) on the refinement path then the scheme is stable. In partic-

ular, if |λ(k)| ≤ 1 for all k and all (∆x,∆t) on the refinement path then the scheme

is stable.

Example. For the explicit scheme we calculate (page 20) that

λ(k) = 1− 4µ sin2(1
2
k∆x),

where µ = ∆t/(∆x)2. Thus this method is stable along any refinement path for which

µ ≤ 1/2 because |λ(k)| ≤ 1 for such µ. For the implicit scheme we calculate (page 26)

λ(k) =
1

1 + 4µ sin2(1
2
k∆x)

.

It follows that |λ(k)| ≤ 1 for any µ, so the implicit scheme is unconditionally stable.

Example. Let’s apply the explicit scheme to a modified heat equation,

ut = uxx − u →
Un+1
j − Un

j

∆t
=
Un
j+1 − 2Un

j + Un
j−1

∆x2
− Un

j .

If Un
j = (λ)neik(j∆x) is a solution then

λ(k) = 1− 4µ sin2((1/2)k∆x) − ∆t.

If µ = 1/2 and k∆x = π then λ(k) = −1 − ∆t so we have |λ(k)| > 1 for this worst

case k. This example illustrates von Neumann’s lemma above, however, because there

is K > 0 so that |λ(k)n| ≤ K for all k and all n so that n∆t ≤ tf . In fact, K = etf

works because

|λ(k)n| ≤ (1 + ∆t)n ≤ (1 + ∆t)N = (1 + tf/N)N ≤ etf

where N = tf/∆t. Thus the use of a refinement path with µ = 1/2 does not generate

instability even though the “sawtooth” mode (maximum gridded frequency mode) does

grow in magnitude, but slowly.

Definition 7 (pages 16 and 17). For a given grid, the error (or actual error or nu-

merical error) of a numerical scheme which computes Un
j at a grid point (xj, tn) is the

difference

enj = Un
j − u(xj, tn)

where u(x, t) is the exact solution. One can also define the maximum error at each

time step,

En = max
j
|enj |.

Remark. This is the error we actually care about: it measures how good the numerical

result is. The truncation error is, by contrast, something we want to be small, but we

know its smallness is not enough to get what we want. That is, instability can get in

the way of making a scheme with small truncation error give a small actual error.
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Definition 8 (pages 16 and 157). A numerical scheme is convergent (along a refine-

ment path (∆xi,∆ti)) if, for any fixed point (x∗, t∗) in the domain,

∆xi → 0, ∆ti → 0, xj → x∗, and tn → t∗ implies Un
j → u(x∗, t∗).

As long as the exact solution is continuous it suffices to show that that the error goes

to zero along the refinement path, that is,

∆xi → 0 and ∆ti → 0 implies enj → 0.

Example. On pages 16–17 it is shown that if µ ≤ 1/2 then the global error for the

explicit method for the heat equation satisfies

max
(xj ,tn)∈ grid

|enj | ≤
1

2
∆t

[
Mtt +

1

6µ
Mxxxx

]
tf ,

where Mtt,Mxxxx are bounds on derivatives of the exact solution. Assuming these

bounds exist and assuming we have a refinement path for which µ ≤ 1/2, it follows

that the explicit method converges.

Example. Theorem 2.2 on page 34 shows that the θ-methods for 0 ≤ θ ≤ 1 converge

if µ(1− θ) ≤ 1
2
. In fact some of the other cases converge. For example we know that

if θ = 1
2

then the method is Crank-Nicolson and convergence actually occurs for any

µ, but in this text we don’t have the needed tools to prove it.

Example. All the previous examples have been about the heat equation. Consider

the simple advection equation

ut + a(x, t)ux = 0

where a(x, t) gives the speed of wave propagation. The argument in section 4.3 (pages

94–96) shows that the first order upwind scheme converges if the “CFL” condition

applies; see also section 4.2. That is, convergence enj → 0 occurs if

ν := (max
x,t
|a(x, t)|) ∆t

∆x
≤ 1.


