Math 615 Applied (Continuum) Numerical Analysis Bueler
Assignment #38
Due Monday, 23 April 2012.

Read subsections 4.1-4.9, 4.11, and 4.12 of MORTON & MAYERS, 2ND
ED.. (We will do nothing related to 4.10.)

1. This paragraph is explanation only: Though the FTCS scheme (4.17) is an
obvious one to try, we learned in class (von Neumann analysis) that it is unstable
on any refinement path where v = aAt/Ax is constant. This prompted early (1950s)
researchers to look for alternative schemes. Upwind is one, but it has only O(At!+Ax?')
accuracy even if the solution is smooth. Another is the Lax-Wendroff scheme, which
is O(At' + Az?) when the solution is smooth. Another is the O(At' + Az?) Lax-
Friedrichs scheme here, but it is not used much in practice because Lax-Wendroff is
better. Specifically Lax-Friedrichs is more damping and dispersive (i.e. more than is
desirable). By the way, Peter Lax is still alive, and published lots in the last decade.

(a) Consider the Lax-Friedrichs scheme which replaces “U}'” in FTCS by the average
of neighbors:

J
At 2Ax
Let v = aAt/Ax. Assuming a is constant, apply the von Neumann analysis and show

n+1 1 n n n n
U =5 U+ j“)+a j+1_U'—1:0.

that the scheme is von Neumann stable if |v| < 1, that is, if CFL applies.
(b) Show that you can write the Lax-Friedrichs scheme as

Uptt = 31+ 00U, + 5(1 = »)UR.
How does CFL relate to interpreting this form of the scheme as an average?”
(c) Show that the truncation error of the scheme satisfies

T7'| < My At + My (Az)?,

and identify M;, Ms. Assume that the solution u(x,t) is sufficiently smooth.
2. Exercise 4.3 from MORTON & MAYERS, 2ND ED. There is a typo in this problem:

“¢” should be “¢”. Note that Figure 4.9 is an example of the phenomenon being
addressed here.
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3. See Figure 4.8 on page 104. This figure shows the success of the Lax-Wendroff
scheme (4.44) in solving an advection problem when the initial data u(x,0) and the
advection velocity a(z, t) are smooth. Specifically, the initial-and-boundary value prob-
lem that is being solved is (4.33) and (4.45), plus a boundary condition:
2
up + a(z, t)u, =0, a(x,t) = 1—1—23:1::—_;1’2—1—374’
u(0,t) =0, u(z,0) = exp [-10(4x — 1)°] .
The exact solution is (4.35), a function defined on x > 0, ¢t > 0, namely:

u(a; Zf) _ u(x*(x,t),()), x*(x,t) > 0, where :E*(ZU t) oy
’ 0, otherwise, ’ 1+ a2

(a) (These questions are intended to help you understand the nature of the exact so-
lution, so you can understand what the numerical schemes below should be producing.)
Check that the exact solution actually solves the initial-and-boundary value problem.
Compute the maximum value of a(x,t) in the first quadrant (i.e. x > 0, ¢t > 0). Draw
a sketch of the first quadrant showing in which region the exact solution u(x,t) is
identically zero, and in which region the formula u(z,t) = u(z*(x,t),0) applies.

(b) Use the upwind scheme to produce a figure comparable to Figure 4.8. Assume
that the x values shown are in the interval [0, 1]. You will not need to add a boundary
condition to do this.

(c) Use the Lax-Friedrichs scheme—see problem 1 above—to produce another figure
comparable to Figure 4.8. You will need to add a boundary condition at the right to
do this, because this numerical scheme requires it, so add “u(1,¢) = 0.

(d) Use the Lax-Wendroff scheme to reproduce Figure 4.8 itself. Use the same nu-
merical boundary condition as in part (c).



