
Math 615 Applied (Continuum) Numerical Analysis Bueler

Assignment #8

Due Monday, 23 April 2012.

Read subsections 4.1–4.9, 4.11, and 4.12 of Morton & Mayers, 2nd

ed.. (We will do nothing related to 4.10.)

1. This paragraph is explanation only : Though the FTCS scheme (4.17) is an

obvious one to try, we learned in class (von Neumann analysis) that it is unstable

on any refinement path where ν = a∆t/∆x is constant. This prompted early (1950s)

researchers to look for alternative schemes. Upwind is one, but it has only O(∆t1+∆x1)

accuracy even if the solution is smooth. Another is the Lax-Wendroff scheme, which

is O(∆t1 + ∆x2) when the solution is smooth. Another is the O(∆t1 + ∆x2) Lax-

Friedrichs scheme here, but it is not used much in practice because Lax-Wendroff is

better. Specifically Lax-Friedrichs is more damping and dispersive (i.e. more than is

desirable). By the way, Peter Lax is still alive, and published lots in the last decade.

(a) Consider the Lax-Friedrichs scheme which replaces “Un
j ” in FTCS by the average

of neighbors:
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Let ν = a∆t/∆x. Assuming a is constant, apply the von Neumann analysis and show

that the scheme is von Neumann stable if |ν| ≤ 1, that is, if CFL applies.

(b) Show that you can write the Lax-Friedrichs scheme as
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How does CFL relate to interpreting this form of the scheme as an average?

(c) Show that the truncation error of the scheme satisfies

|T n
j | ≤M1∆t+M2(∆x)2,

and identify M1,M2. Assume that the solution u(x, t) is sufficiently smooth.

2. Exercise 4.3 from Morton & Mayers, 2nd ed. There is a typo in this problem:

“ξ” should be “ε”. Note that Figure 4.9 is an example of the phenomenon being

addressed here.
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3. See Figure 4.8 on page 104. This figure shows the success of the Lax-Wendroff

scheme (4.44) in solving an advection problem when the initial data u(x, 0) and the

advection velocity a(x, t) are smooth. Specifically, the initial-and-boundary value prob-

lem that is being solved is (4.33) and (4.45), plus a boundary condition:

ut + a(x, t)ux = 0, a(x, t) =
1 + x2

1 + 2xt+ 2x2 + x4
,

u(0, t) = 0, u(x, 0) = exp
[
−10(4x− 1)2

]
.

The exact solution is (4.35), a function defined on x ≥ 0, t ≥ 0, namely:

u(x, t) =

{
u(x∗(x, t), 0), x∗(x, t) > 0,

0, otherwise,
where x∗(x, t) = x− t

1 + x2
.

(a) (These questions are intended to help you understand the nature of the exact so-

lution, so you can understand what the numerical schemes below should be producing.)

Check that the exact solution actually solves the initial-and-boundary value problem.

Compute the maximum value of a(x, t) in the first quadrant (i.e. x ≥ 0, t ≥ 0). Draw

a sketch of the first quadrant showing in which region the exact solution u(x, t) is

identically zero, and in which region the formula u(x, t) = u(x∗(x, t), 0) applies.

(b) Use the upwind scheme to produce a figure comparable to Figure 4.8. Assume

that the x values shown are in the interval [0, 1]. You will not need to add a boundary

condition to do this.

(c) Use the Lax-Friedrichs scheme—see problem 1 above—to produce another figure

comparable to Figure 4.8. You will need to add a boundary condition at the right to

do this, because this numerical scheme requires it, so add “u(1, t) = 0”.

(d) Use the Lax-Wendroff scheme to reproduce Figure 4.8 itself. Use the same nu-

merical boundary condition as in part (c).


