
Math 615 Applied (Continuum) Numerical Analysis (Bueler) February 16, 2012

Assignment #4
Due Monday, 27 February 2012.

Read sections 2.7, 2.8, 2.10, 2.11, 2.12, and 2.15 of Morton & Mayers,

2nd ed.

Browsing section 2.9 is a good idea. Throughout this course, however,

we will assume that MOP = Matlab/Octave/pylab is the right tool

for linear algebra. We will not dig deeper than that. To learn about

numerical linear algebra, this textbook is highly recommended: Trefethen

and Bau, Numerical Linear Algebra, SIAM Press 1997.

1. Consider applying the explicit and implicit methods to a heat equation with constant

conduction K > 0 and an additional “reaction” term with constant rate C; the PDE is

ut = K uxx + C u. Note that all cases C > 0, C = 0, C < 0 are to be considered. Here

are three schemes:
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(a) First, revert to the K = 0 case. The PDE become an easy ODE. The three schemes

become only two schemes for the ODE. State the ODE and solve it, identify these ODE

schemes, and address their stability. (Hint : For the stability of the ODE schemes you

will probably want to look up what that might mean.)

(b) Apply the Fourier/von Neumann analysis of section 2.7 to each of the schemes and

discuss the result. Will the semi-implicit and fully-implicit schemes be very different in

their stability behavior? Explain.

(c) Implement in MOP the semi-implicit scheme for this problem with K = C = 1:

ut = uxx + u, u(0, t) = 0, u(π, t) = 0, u(x, 0) = sin(x) + sin(3x).

The exact solution of this problem is

u(x, t) = et sin(x) + e−7t sin(3x).

Using ∆x = π/100 and ∆t = 0.01, measure the numerical error at t = 0.5. In what

you turn in, of course you should include the implementation (= the code) and also give

reasonable, brief evidence of success.
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2. Exercise 2.6 in Morton & Mayers (page 59). Do only parts (i) and (ii). (The

analysis in part (iii) is similar to that in (ii), so let’s avoid too much work.) The result

from part (i) is used in part (ii). A good idea is to draw the stable region in the b, c

plane in part (i).

3. Let xj+1/2 = xj + ∆x/2 and pj+1/2 = p(xj+1/2). Show that the “staggered grid”

explicit scheme
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for the differential equation
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is consistent if we also assume that p(x) has a continuous derivative.

(Hints: This replaces Exercise 2.7, page 59. This question is easier. You seek the leading

terms in the truncation error. Use Taylor’s theorem to get

p(x+ ε) [u(x+ ∆, t)− u(x, t)] =
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Now use this twice, for ε = ±∆x/2, to expand and simplify this expression:

p(x+ ∆x/2) [u(x+ ∆x, t)− u(x, t)]− p(x−∆x/2) [u(x, t)− u(x−∆x, t)] .

Divide by ∆x2. Also expand the finite difference approximation of the time derivative, and

then state the truncation error. Finally consider what happens as ∆t→ 0 and ∆x→ 0.)


