Math/Phys 612 Mathematical Physics II (Bueler) February 1, 2006

Constructing everywhere orthogonal vector fields
by complex means

Recall that in class I did an example where I started with a given vector field F(z,y)
on the plane and used complex-variable means, namely the Cauchy-Riemann equations, to
construct a second vector field G(z,y) satisfying

F(z,y) - G(z,y) =0 for all (z,y) in the plane.

I believe I did the example correctly.
The question arose, however, what properties of F(z,y) were required to make it work?
The following theorem substantially answers the question:

Theorem. Suppose
F(z,y) = a(z,y)i+b(z,y)]
is a vector field in the plane with differentiable components a,b.

If
b
@ = 3_ at all points in the plane
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then there is a function u(x,y) such that Vu = F at all points in the plane.
If, in addition, any of the following equivalent conditions hold:
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at all points in the plane, or
iii) there exists a solution v(x,y) to the Cauchy-Riemann equations for u and v,
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then there is a vector field G(x,y) such that F - G = 0 at all points in the plane. In fact,
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Note that if condition ) holds then actually a,b solve the Cauchy-Riemann equations and
F is just a vector field version of a complex analytic function.
This first example I give now is the one I did in class, which shows how to actually construct

G in a case where it exists.

Example. Suppose F(z,y) = 6zyi+ (32® — 3y?)j. Then indeed a, = 6z = b, and we
compute u from the equations u, = 6zy, u, = 322 — 3y* to get u(z,y) = 32*y — y* + c. Now
we note that a, + b, = 6y — 6y = 0 (and also uy, + uy, = 6y — 6y = 0). Thus we can find
v(z,y) satisfying the Cauchy-Riemann equations: v, = u, = 6zy, v, = —u, = 3y* — 3z°.
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From the expression for v, v(x,y) = 3zy* + ¢(z). From the expression for v,, ¢'(z) = —3z?
so ¢(x) = —z® + C. Thus v(z,y) = 3zy*> — 2> + C so G(x,y) = Vv = (3y* — 32?) i+ 6zyj.
We check that F - G = 0 at all points in the plane.

The proof of the above theorem is to do this example in general. That is, to see that each
step of the construction of G is possible with the given assumptions. The crucial step in
showing equivalence of conditions 7), i), and 4ii) corresponds to noting that if « is harmonic
(i.e. uyy + uy, = 0) then this is a sufficient condition for there to be a v so that u and v
simultaneously solve the Cauchy-Riemann equations.

The next example shows that the first “If” in the theorem holds, the second “If” may not
hold, and there can then be no G.

Example. Suppose F(z,y) = 2zi+ 2yj. Then a, = 0 = b, so u exists. In fact, u(z,y) =
z? 4+ y* + ¢. Note that a, + b, = 4 # 0 and also that uy, + u,, = 4 # 0. Furthermore, no
v(z,y) exists so that u,v solve the Cauchy-Riemann equations. In fact, if such a v existed
then v, = u, = 2x so v(z,y) = 2zy + ¢(z) while v, = —u, = —2y. That is, we would require
2y + ¢'(z) = —2y or ¢'(x) = —4y, an impossibility.

Note that the F and G produced by the theorem satisfy F -G = 0 by construction but that
they also satisfy |F| = |G|. Indeed this is a point made in section 20.2 of the text because,
in the theorem, v and v satisfy the Cauchy-Riemann equations and F = Vu and G = Vu.

Merely finding a nontrivial orthogonal vector field turns out to be not very hard and not to
require any interesting conditions. The G which results from application of the next theorem
cannot be expected to be very useful, however.

Theorem. Suppose F(x,y) is a planar continuous vector field which is nonzero at a point
(x0,Y0). There is a not-everywhere-zero continuous planar vector field G(z,y) such that
F - G =0 everywhere in the plane.

Proof. Let F = ai—+bj. We seek ¢(x,y),d(x,y) continuous scalar functions so that
a(z,y)e(z,y) + b(x, y)d(z,y) = 0

everywhere. Recalling F(xg, o) is not the zero vector, suppose a(zg,yo) # 0; the other case

b(zo, o) # 0 is similar. Because a is continuous we know there is € > 0 so that a(z,y) # 0 if

V0T — x> + [y — wo|?> < ¢, i.e. near (xg,yp). Let d(x,y) be a continuous function such that
d(zo,y0) = 1 and d(x,y) = 0 if \/]z — 20| + |y — o[> > €. Now define

- —Cl(ffyy)ilb({f’y)d(x,y), \/|l‘—l’0|2+ |y_y0|2 <€,
C(;T),y) -

0, V0T — ol + |y —wol> > e

This function is well-defined and continuous. Furthermore, by construction, F - G = 0

everywhere in the plane. In fact, where \/|z — z0]? + |y — yo|? < € we have
F-G = a(r,y)c(z,y) + b(x, y)d(x, y)
= a(z,y) [~a(z,y)""b(z,y)d(z,y)] + bz, y)d(z,y) = 0
and where \/|z — 2|2 + |y — yo|? > € we have
F-G=a(z,y)0+b(z,y)0=0.




