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Constructing everywhere orthogonal vector fields
by complex means

Recall that in class I did an example where I started with a given vector field F(x, y)

on the plane and used complex-variable means, namely the Cauchy-Riemann equations, to

construct a second vector field G(x, y) satisfying

F(x, y) · G(x, y) = 0 for all (x, y) in the plane.

I believe I did the example correctly.

The question arose, however, what properties of F(x, y) were required to make it work?

The following theorem substantially answers the question:

Theorem. Suppose

F(x, y) = a(x, y) i + b(x, y) j

is a vector field in the plane with differentiable components a, b.

If
∂a

∂y
=

∂b

∂x
at all points in the plane

then there is a function u(x, y) such that ∇u = F at all points in the plane.

If, in addition, any of the following equivalent conditions hold:

i)
∂a

∂x
+

∂b

∂y
= 0

at all points in the plane, or

ii)
∂2u

∂x2
+

∂2u

∂y2
= 0

at all points in the plane, or

iii) there exists a solution v(x, y) to the Cauchy-Riemann equations for u and v,

∂v

∂y
=

∂u

∂x
and

∂v

∂x
= −∂u

∂y
,

then there is a vector field G(x, y) such that F ·G = 0 at all points in the plane. In fact,

G = ∇v =
∂v

∂x
i +

∂v

∂y
j = −∂u

∂y
i +

∂u

∂x
j.

Note that if condition i) holds then actually a, b solve the Cauchy-Riemann equations and

F is just a vector field version of a complex analytic function.

This first example I give now is the one I did in class, which shows how to actually construct

G in a case where it exists.

Example. Suppose F(x, y) = 6xy i + (3x2 − 3y2) j. Then indeed ay = 6x = bx and we

compute u from the equations ux = 6xy, uy = 3x2− 3y2 to get u(x, y) = 3x2y− y3 + c. Now

we note that ax + by = 6y − 6y = 0 (and also uxx + uyy = 6y − 6y = 0). Thus we can find

v(x, y) satisfying the Cauchy-Riemann equations: vy = ux = 6xy, vx = −uy = 3y2 − 3x2.
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From the expression for vy, v(x, y) = 3xy2 + φ(x). From the expression for vx, φ′(x) = −3x2

so φ(x) = −x3 + C. Thus v(x, y) = 3xy2 − x3 + C so G(x, y) = ∇v = (3y2 − 3x2) i + 6xy j.

We check that F ·G = 0 at all points in the plane.

The proof of the above theorem is to do this example in general. That is, to see that each

step of the construction of G is possible with the given assumptions. The crucial step in

showing equivalence of conditions i), ii), and iii) corresponds to noting that if u is harmonic

(i.e. uxx + uyy = 0) then this is a sufficient condition for there to be a v so that u and v

simultaneously solve the Cauchy-Riemann equations.

The next example shows that the first “If” in the theorem holds, the second “If” may not

hold, and there can then be no G.

Example. Suppose F(x, y) = 2x i + 2y j. Then ay = 0 = bx so u exists. In fact, u(x, y) =

x2 + y2 + c. Note that ax + by = 4 6= 0 and also that uxx + uyy = 4 6= 0. Furthermore, no

v(x, y) exists so that u, v solve the Cauchy-Riemann equations. In fact, if such a v existed

then vy = ux = 2x so v(x, y) = 2xy +φ(x) while vx = −uy = −2y. That is, we would require

2y + φ′(x) = −2y or φ′(x) = −4y, an impossibility.

Note that the F and G produced by the theorem satisfy F ·G = 0 by construction but that

they also satisfy |F| = |G|. Indeed this is a point made in section 20.2 of the text because,

in the theorem, u and v satisfy the Cauchy-Riemann equations and F = ∇u and G = ∇v.

Merely finding a nontrivial orthogonal vector field turns out to be not very hard and not to

require any interesting conditions. The G which results from application of the next theorem

cannot be expected to be very useful, however.

Theorem. Suppose F(x, y) is a planar continuous vector field which is nonzero at a point

(x0, y0). There is a not-everywhere-zero continuous planar vector field G(x, y) such that

F ·G = 0 everywhere in the plane.

Proof. Let F = a i + b j. We seek c(x, y), d(x, y) continuous scalar functions so that

a(x, y)c(x, y) + b(x, y)d(x, y) = 0

everywhere. Recalling F(x0, y0) is not the zero vector, suppose a(x0, y0) 6= 0; the other case

b(x0, y0) 6= 0 is similar. Because a is continuous we know there is ε > 0 so that a(x, y) 6= 0 if√
|x− x0|2 + |y − y0|2 < ε, i.e. near (x0, y0). Let d(x, y) be a continuous function such that

d(x0, y0) = 1 and d(x, y) = 0 if
√
|x− x0|2 + |y − y0|2 ≥ ε. Now define

c(x, y) =

{
−a(x, y)−1b(x, y)d(x, y),

√
|x− x0|2 + |y − y0|2 < ε,

0,
√
|x− x0|2 + |y − y0|2 ≥ ε.

This function is well-defined and continuous. Furthermore, by construction, F · G = 0

everywhere in the plane. In fact, where
√
|x− x0|2 + |y − y0|2 < ε we have

F ·G = a(x, y)c(x, y) + b(x, y)d(x, y)

= a(x, y)
[−a(x, y)−1b(x, y)d(x, y)

]
+ b(x, y)d(x, y) = 0

and where
√
|x− x0|2 + |y − y0|2 ≥ ε we have

F ·G = a(x, y) 0 + b(x, y) 0 = 0.
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