Math/Phys 612 Mathematical Physics II (Bueler) March 28, 2006

Selected Solutions to Assignment # 5

20.18 Suppose that f has a simple zero at zo € C. Then there exists a function
g(z), which is analytic and nonzero on a small neighborhood C' about z;, such that

f(2) = g(2)(z = 2). Note that f'(z) = ¢'(z) + (2 — 20)9(2), s0 f'(20) = 9(%). Then
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To compute the integral, take the contour C' to be the unit circle. Then taking sin =
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where f(2) ”(2”;# This function has a simple zeros in C at z; = 0 and z; =

i(a —va? — 1). The derivative of f is —i + 4az/(z* — 1)?, giving f'(0) = —i and f'(z;) =
—ia/v/a? — 1. The result from the first part gives
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20.19 The equation of an ellipse in polar coordinates with one focus at the origin is
r(0) = I(1 4+ ecosf) . Let C be the unit circle. The area of this ellipse is
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The integrand has poles of order two at 215 =c '+ 2—-1.Only z; = ' —ve 2 -1
isin C. So
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20.24 The function f(z) = (1 —2")~! = (¢?™ — z")~! has singularities at 2, = ¢"™/" since

e’ = ¢ when 6 = 7/n. The residue of f at z is
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The wedge shaped contour C of angle 27/n with one side along the real axis can be
defined as the limit of contours Cy which extends along the real axis to + = R. The
contour integral of the function on C; can be computed as follows, with the changes
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of variables t — Re? and t — re in the second and third integrals, respectively
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The left hand side is equal to 27i - (—¢™™/™/n) by the Residue Theorem. Note that
since I3 is simply /; rotated through an angle of 27i/n but is oriented in the opposite

direction, I; = —e*>™/"],. The value of I, vanishes as R — oo through application of the
Jordan Lemma to the function g(f) = R/(1 + R"¢™) and a trivial change of variables
w = 22 to deal with the angle of C. This stretches out the wedge to fill the upper
half plane. Note that this moves the poles at z = ¢/™/", in the center of the wedge, to

w = /2 on the imaginary axis. This leaves
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20.32 Note that the transformed function
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has no pole at s = 0. Take F(s) = e */s* and Fy(s) = (s —1)/s*. Recall that the inverse

transform is linear, so L7'[F] = L7'[Fy] + L7 [F).

For x < 0, take the Bromwich contour C; toward the right side of the plane. Since

there are no poles in this region, the Cauchy theorem gives L7 !'[F| = f(z) = 0 for

x < 0. For z > 1 using the contour C, toward the left half plane, L~![F] is again zero
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since the exponent of e is negative. When z € (0,¢), f(x) can be computed by
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. Then R, = 0 since s = 0 is not included in C; for A > 0 and R, = ;--Res(e**(s—1)/s?) =
z(s —1)e* + e** = —x + 1 = 1 — x. Combining these yeilds
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F#) = 0 x ¢ (0,1).



