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Selected Solutions to Assignment # 5

20.18 Suppose that f has a simple zero at z0 ∈ C. Then there exists a function
g(z), which is analytic and nonzero on a small neighborhood C about z0, such that
f(z) = g(z)(z − z0). Note that f ′(z) = g′(z) + (z − z0)g(z), so f ′(z0) = g(z0). Then

Res
(

1

f(z)
, z0

)
=

1

2πi

∮

C

dz

f(z)
=

1

2πi

∮

C

dz

(z − z0)g(z)
=

1

g(z0)
=

1

f ′(z0)
.

To compute the integral, take the contour C to be the unit circle. Then taking sin θ =

(z − z−1)/2i, ∫ π

−π

sin θdθ

a− sin θ
=

∮

C

z2 − 1 dz

iz(2iaz − z2 + 1)
=

∮

C

dz

f(z)

where f(z) = iz(2iaz−z2+1)
z2−1

. This function has a simple zeros in C at z0 = 0 and z1 =

i(a−√a2 − 1). The derivative of f is −i + 4az/(z2 − 1)2, giving f ′(0) = −i and f ′(z1) =

−ia/
√

a2 − 1. The result from the first part gives
∫ π

−π

sin θdθ

a− sin θ
=

2πi

f ′(z0) + f ′(z1)
= 2π

(
a√

a2 − 1
− 1

)
after some nasty algebra.

20.19 The equation of an ellipse in polar coordinates with one focus at the origin is
r(θ) = l(1 + ε cos θ)−1. Let C be the unit circle. The area of this ellipse is

A =
1

2

∫ 2π

0

r2(θ)dθ =
1

2

∫ 2π

0

(
l

1− ε cos θ

)2

dθ =
l2

2

∮

C

dz

iz[1− ε
4
(z + z−1)]2

dz

=
2l2

i

∮

C

z dz

(2z − εz2 − ε)2

The integrand has poles of order two at z1,2 = ε−1±√ε−2 − 1. Only z1 = ε−1−√ε−2 − 1

is in C. So

A =
2l2

i

∮

C

z dz

(z − z1)2(z − z2)2
= 2πi

2l2

i

d

dz

[
z

(z − z2)2

]

z=z1

= 4l2π

[ −z − z1

(z − z1)3

]

z=z0

=
πεl2

(1− ε2)3/2

20.24 The function f(z) = (1− zn)−1 = (e2πi− zn)−1 has singularities at z0 = eiπ/n since
einθ = eiπ when θ = π/n. The residue of f at z0 is

lim
z→z0

[
(z − z0)

1

e2πi + zn

]
L’hop
= lim

z→z0

1

nzn−1
=

1

nei(n−1)π/n
=
−eiπ/n

n
.

1



The wedge shaped contour C of angle 2π/n with one side along the real axis can be
defined as the limit of contours CR which extends along the real axis to x = R. The
contour integral of the function on CR can be computed as follows, with the changes
of variables t → Reiθ and t → re2πi/n in the second and third integrals, respectively

∮

CR

dz

1 + zn
=

∫ R

0

dt

1 + tn
+

∫ 2π/n

0

iReiθdθ

1 + Rneinθ
+

∫ 0

R

e2πi/ndt

1 + tne2πi/n
= I1 + I2 + I3.

The left hand side is equal to 2πi · (−eiπ/n/n) by the Residue Theorem. Note that
since I3 is simply I1 rotated through an angle of 2πi/n but is oriented in the opposite
direction, I3 = −e2πi/nI1. The value of I2 vanishes as R →∞ through application of the
Jordan Lemma to the function g(θ) = R/(1 + Rneinθ) and a trivial change of variables
w = zn/2 to deal with the angle of CR. This stretches out the wedge to fill the upper
half plane. Note that this moves the poles at z = eiπ/n, in the center of the wedge, to
w = eiπ/2 on the imaginary axis. This leaves

lim
R→∞

I1 =

∫ ∞

0

dt

1 + tn
=

1

1− e2πi/n
· −2πieiπ/n

n
=

π

n
· −2i

e−iπ/n − eiπ/n
=

π

n
csc

π

n

20.32 Note that the transformed function

F (s) =
e−s − 1 + s

s2
=

(
1− s + s2

2
− s3

3!
+ · · ·

)
− (1− s)

s2
=

1

2
− s

3!
+

s2

4!
− · · ·

has no pole at s = 0. Take F1(s) = e−s/s2 and F2(s) = (s−1)/s2. Recall that the inverse
transform is linear, so L−1[F ] = L−1[F1] + L−1[F2].

For x < 0, take the Bromwich contour C1 toward the right side of the plane. Since
there are no poles in this region, the Cauchy theorem gives L−1[F ] = f(x) = 0 for
x < 0. For x ≥ 1 using the contour C2 toward the left half plane, L−1[F ] is again zero
since the exponent of es(x−1) is negative. When x ∈ (0, t), f(x) can be computed by

1

2πi

∫ λ+i∞

λ−i∞

es(x−1)

s2
+

esx(s− 1)

s2
ds =

1

2πi

(∮

C1

es(x−1)

s2
ds +

∮

C2

esx(s− 1)

s2
ds

)
= R1 + R2

. Then R1 = 0 since s = 0 is not included in C1 for λ > 0 and R2 = 1
2πi

Res(esx(s−1)/s2) =

x(s− 1)esx + esx = −x + 1 = 1− x. Combining these yeilds

f(x) =





1− x x ∈ (0, 1)

0 x /∈ (0, 1).
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