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The Fourier transform of the Heaviside function: a tragedy

Let

(1) H(t) =

{
1, t > 0,

0, t < 0.

This function is the unit step or Heaviside1 function. A basic fact about H(t) is that it is an
antiderivative of the Dirac delta function:2

(2) H ′(t) = δ(t).

If we attempt to take the Fourier transform of H(t) directly we get the following statement:

H̃(ω) =
1√
2π

∫ ∞

0
e−iωt dt = lim

B→+∞
1√
2π

1− e−iωB

iω
.

The limit on the right, and the integral itself, does not exist because limB→∞ e−iωB does not exist.
One might propose that the average value of e−iωB, for fixed ω and B →∞, is zero. It might then
make sense to conclude:

(3) H̃(ω) ?=
1√
2π

1
iω

.

Certainly this formula is a good candidate for H̃, but it would be nice to get some kind of confir-
mation because we are clearly on shaky ground here.

Another possibility for accessing H̃(ω) is to define3

HL(t) =

{
1, 0 < t < L,

0, t < 0 or t > L

and consider the Fourier transform:

H̃L(ω) =
1√
2π

∫ L

0
e−iωt dt =

1√
2π

1− e−iωL

iω
=

√
2
π

e−iωL/2 sin(ωL/2)
ω

.

This integral and transform make sense because L is finite. But this calculation doesn’t help us.
We still have the same difficulty of limits as L → ∞. In fact, we have merely replaced “B” with
“L” in the argument which led to (3).

Let’s consider less direct routes to get H̃(ω). From equation (2) we know, by easy and uncontro-
versial calculation, that δ̃(ω) = 1/

√
2π. But then, from F [f ′] = iωf̃(ω),

(4) H̃(ω) ?=
1
iω
F [H ′] =

1√
2π

1
iω

.

This seems to confirm (3); we are getting somewhere.
For further confirmation we form a different approximation to H(t) and take the limit. Let

Hα(t) =

{
e−αt, t > 0,

0, t < 0.

1From Wikipedia: Oliver Heaviside (1850–1925) was a self-taught English engineer, mathematician and physicist

who adapted complex numbers to the study of electrical circuits, developed techniques for applying Laplace transforms

to the solution of differential equations, . . . [and] recast Maxwell’s mathematical analysis from its original quaternion

form to its modern vector terminology, thereby reducing the original twenty equations in twenty unknowns down to

the four differential equations in four unknowns we now know as Maxwell’s equations.
2This statement is precise if H(t) and δ(t) are regarded as generalized functions, also known as distributions.
3This is what I was doing in class. I made a mess of it.
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Note that
lim

α→0+
Hα(t) = H(t)

for every t ∈ R. Furthermore, if α > 0 then the Fourier transform exists:

H̃α(ω) =
1√
2π

∫ ∞

0
e−(α+iω)t dt =

1√
2π

1
α + iω

.

Thus we see the same formula for H̃ appear in the α → 0+ limit:4

(5) H̃(ω) ?= lim
α→0+

H̃α(ω) =
1√
2π

1
iω

.

Unfortunately , formula (3) is wrong. Note the formula is undefined at zero. In some sense, as
I now show, we have the value at ω = 0 wrong.

Formula (3) doesn’t stand up to applying the inverse transform to get back to H(t). Indeed,

F−1

[
1√
2π

1
iω

]
=

1
2πi

∫ ∞

−∞

eiωt

ω
dω

∗=
1

2πi

(∫ 0

−∞
· · ·+

∫ ∞

0
. . .

)

∗∗=
1

2πi

∫ ∞

0

eiωt − e−iωt

ω
dω =

1
π

∫ ∞

0

sinωt

ω
dω =

1
2
.

There are several comments to make on the above calculation; it is correct with certain caveats.
First, the splitting of the integral at zero in step ∗ is critical. That is, the two integrals

∫ 0
−∞ . . .

and
∫∞
0 . . . give real parts of ∞ and −∞, respectively, but once we change variables and combine

the integrals (step ∗∗) we get cancelation of these real parts and a finite purely imaginary value is
revealed. This splitting of an integral at zero is called computing the Cauchy principle value of the
integral. Another comment is that our calculation is only correct if t > 0. If t < 0 the step ∗∗ gives
an extra negative; the result is −1/2. Finally, the integral∫ ∞

0

sinω

ω
dω =

π

2
is by no means trivial. There is no antiderivative of sincx = sinx/x expressible in elementary
functions, but contour integral techniques (chapter 20) give the value here.

Thus we have

F−1

[
1√
2π

1
iω

]
(t) =

{
1/2, t > 0,

−1/2, t < 0.

This is not H(t) but rather H(t)− 1/2. Thus

(CORRECT!) H̃(ω) =
1√
2π

1
iω

+
1
2

√
2πδ(ω) =

1√
2π

1
iω

+
√

π

2
δ(ω)

because F−1[δ(ω)](t) = 1/
√

2π.
The only difference between this correct result and our previous calculations (3), (4), and (5) is

the value at ω = 0. In fact, it is clear, at least in retrospect, that those calculations did not apply
to the value at ω = 0.
Exercise/Application (optional). Suppose we know the transform f̃(ω) of f(t). Let g(t) =
H(t)f(t), so g(t) is the “same signal as f(t) but turned off until time zero.” Show that

g̃(ω) =
1

2πi

∫ ∞

−∞

f̃(ω − x)
x

dx +
1
2
f̃(ω).

Hint : F [u(t)v(t)] = (1/
√

2π)ũ(ω) ∗ ṽ(ω).

4In this argument we come close to the Laplace transform of H(t). The following transform is easy and uncontro-

versial: L[H(t− t0)] = e−st0/s.


