
Math 611 Mathematical Physics I (Bueler) December 14, 2005

Selected Solutions to Assignment #10
I graded G, H, I, J, and L at four points each for a total of 20 points.

G. If n is odd then
∫ 2π
0 cosn θ dθ = 0 by the symmetry illustrated in figure 1. In fact,

∫ 2π

π
cosn θ dθ =

∫ π

0

(
cos(θ′ + π)

)n
dθ′ =

∫ π

0

(− cos(θ′)
)n

dθ′ = −
∫ π

0
cosn θ dθ,

by substituting θ′ = θ + π, so the combined integral over [0, 2π] is zero.
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Figure 1. The integral of an odd power of cos θ over [0, 2π] is zero.

If n is even then we do an integration-by-parts to get a recursion:
∫ 2π

0
cos2k θ dθ =

∫ 2π

0
cos2k−1 θ cos θ dθ = cos2k−1 θ sin θ

]2π

0
−

∫ 2π

0
(2k − 1) cos2k−2 θ(− sin θ) sin θ dθ

= 0 + (2k − 1)
∫ 2π

0
cos2k−2 θ(1− cos2 θ) dθ

= (2k − 1)
∫ 2π

0
cos2k−2 θ dθ − (2k − 1)

∫ 2π

0
cos2k θ dθ.

With Ik defined in the problem statement,

Ik = (2k − 1)Ik−1 − (2k − 1)Ik ⇐⇒ Ik =
2k − 1

2k
Ik.

Since I0 = 2π by a trivial integral, one finds from this recursion that

I1 =
2π

2
, I2 =

2π · 3
4 · 2 =

2π · 4 · 3 · 2 · 1
4 · 2 · 4 · 2 = 2π

4!
24 2! 2!

, etc.

H.

F ′(z) =
∫ 2π

0

∂

∂z

(
eiz cos θ

)
dθ =

∫ 2π

0
(i cos θ)eiz cos θ dθ

and generally

F (n)(z) =
∫ 2π

0
(i cos θ)neiz cos θ dθ.
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Thus

F (n)(0) =
∫ 2π

0
(i cos θ)n dθ = in

∫ 2π

0
cos θn dθ.

Problem G above computes these integrals, which are only nonzero for even n.
Thus by Taylor series,

F (z) =
∞∑

n=0

F (n)(0)
n!

zn =
∞∑

k=0

i2kIk

(2k)!
z2k = 2π

∞∑

k=0

(−1)k(2k)!
22kk!k!(2k)!

z2k = 2π
∞∑

k=0

(−1)k

22kk!k!
z2k.

This is 2π times the series for J0(z) on page 567. Thus F (z) = 2πJ0(z), as claimed.

I.

f̃(u, v) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f(r)e−i(ux+vy) dx dy =

1
2π

∫ 2π

0

∫ ∞

0
f(r)e−irq(cos φ cos θ+sin φ sin θ) r dr dθ

=
∫ ∞

0
f(r)

[
1
2π

∫ 2π

0
e−irq cos(θ−φ) dθ

]
r dr

∗=
∫ ∞

0
f(r)

[
1
2π

∫ 2π

0
e−irq cos θ′ dθ′

]
r dr

∗∗=
∫ ∞

0
f(r)J0(−rq) r dr

†
=

∫ ∞

0
f(r)J0(rq) r dr.

At step ∗ we substitute θ′ = θ−φ and note that the integrand e−rq cos θ′ is periodic with period 2π
so any integral over an interval of length 2π gives the same result. In step ∗∗ we use H. In step
† we note that J0 is an even function because the Taylor series for J0(z) has only even powers.

J. Given f(r). If

F (q) =
∫ ∞

0
f(r)J0(rq)r dr

and if we define the corresponding function on the the plane g(x, y) = f(
√

x2 + y2) then

g̃(u, v) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
e−i(ux+vy)f(

√
x2 + y2) dx dy

∗=
∫ ∞

0
f(r)J0(rq)r dr = F (q).

In step ∗ we have used I above, and we let r =
√

x2 + y2 and q =
√

u2 + v2. On the other hand,

g(x, y) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
g̃(u, v) e+i(ux+vy) du dv

†
=

∫ ∞

0
F (q)J0(rq)q dq.

To do step † we technically would need to repeat the calculation in I but with “+irq” replacing
“−irq,” but it is easy to see how it would come out. Thus

f(r) = g(x, y) =
∫ ∞

0
F (q)J0(rq)q dq.

In other words, the Hankel transform is self-inverse because the two-variable Fourier transform
is nearly self-inverse in general but, in particular, it is self-inverse on radial functions.

K. The calculation of the Laplacian ∇2 in polar coordinates is standard, and it is almost done
in section 10.11 of the text. (It may be standard, but it is still a pain in the . . . )
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To compute the Hankel transform of the Laplacian we integrate-by-parts twice, and we need
to assume that the boundary terms are zero:∫ ∞

0

(
f ′′(r) + r−1f ′(r)

)
J0(qr)r dr = f ′(r)J0(qr)r

]∞
0
−

∫ ∞

0
f ′(r)

∂

∂r
(J0(qr)r) dr +

∫ ∞

0
f ′(r)J0(qr) dr

= 0−
∫ ∞

0
f ′(r)

[
J ′0(qr)qr

]
dr = −f(r)J ′0(qr)qr

]∞
0

+
∫ ∞

0
f(r)

(
J ′0(qr)qr

)′
dr

∗= 0 +
∫ ∞

0

f(r)
r

(
z2J ′′0 (z) + zJ ′0(z)

)
dr

†
=

∫ ∞

0

f(r)
r

(−z2J0(z)
)

dr

= −q2

∫ ∞

0
f(r)J0(qr)r dr = −q2F (q).

We substituted z = qr in step ∗ to recognize Bessel’s equation

z2y′′ + zy′ + (z2 − 0)y = 0,

which is solved by y(z) = J0(z), in step †. [In the problem statement I failed to specify the
necessary assumptions to make the boundary terms go away. In essence one cannot give them
more specifically than to say “assume the boundary terms go away.”]

L. First, I should have mentioned in the problem statement that the given rigid plate equation
includes a bouyant restoring force−ρgu where ρ is the density of the displaced fluid. The displaced
fluid is the earth’s mantle in the geophysical context.

Let U(q) be the Hankel transform of u(r) and let Π̄a(q) be the Hankel transform of the load
function Πa(r), which describes a disc load in polar coordinates. The given rigid plate equation
has Hankel transform

ρgU(q) + Dq4U(q) = µΠ̄a(q),

because
H[∇4u](q) = H[∇2(∇2u)](q) = −q2(−q2U(q)) = q4U(q),

where “H” stands for the Hankel transform, so

U(q) =
µΠ̄a(q)

ρg + Dq4
.

The transform of the load is calculated as follows:

Π̄a(q) =
∫ ∞

0
Πa(r)J0(rq)r dr =

∫ a

0
J0(rq)r dr

∗= q−2

∫ aq

0
J0(z)z dz = q−2

(
zJ1(z)

]aq

0

)

= q−2aqJ1(aq) = q−1aJ1(aq).

Obviously z = rq in step ∗, and then we use the antiderivative stated in the problem. It follows
that, as claimed,

U(q) =
µaJ1(aq)

q(ρg + Dq4)
.

Now, u(r) can be recovered by another Hankel transform (since by J the Hankel tranform is
self-inverse):

(1) u(r) =
∫ ∞

0

µaJ1(aq)
q(ρg + Dq4)

J0(rq)q dq = aµ

∫ ∞

0

J1(aq) J0(rq)
ρg + Dq4

dq.
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Continuation of L in a geophysical context. The last formula (1) is computable in practice,
though the oscillatory integral is a bit painful numerically. In any case I have had a recent excuse
to compute it, and the result is shown in figure 2 as the dashed curve.
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Figure 2. Vertical displacement at 2000 years (solid), and equilibrium displacement (at
time ∞ in equation (2); dashed), for a disc load of ice with thickness 1000 (m) and radius
1000 (km). “Compensation depth” also shown; see text.

In particular, the original PDE given in L can be regarded as the equilibrium equation of the
PDE

(2)
∂

∂t

(
2η(−∇2)1/2u

)
+ ρgu + D∇4u = µΠa(r)

which describes the time-dependent displacement u(r, t) of the rigid plate. Here we assume that
it is underlain by a half-space filled with a viscous fluid of viscosity η. The operator (−∇2)1/2

does make sense, but the definition using the Fourier transform is skipped here; see me or David
Newman if you want.

In this geophysical context1 we have assumed that the lithosphere is a rigid plate with flexural
rigidity D = 5.0 × 1024 N m and that the density and viscosity of the underlying mantle are
ρ = 3300 kg m−3 and η = 1021 Pa s, respectively. The acceleration of gravity is g = 9.81m s−2.

If we suppose that a disc load of ice,2 with radius a = 1000 km and thickness 1000 m, is placed
at the origin at time t = 0, then figure 2 should make sense. (A separate Hankel-transform of
(2) computes the result for 2000 years if one starts with zero displacement at time zero.) The
equilibrium (“t = ∞” for equation (2)) is exactly what we solved in problem L. Figure 2 also
shows the geophysically-interesting “bulges” which follow from (1), at roughly r = 600 km and
r = 1300 km.

The “compensation depth” is the depth to which an ice disc load of thickness 1000 m and
infinite extent would sink as t →∞; that is, this is the depth where the bouyant force balances
the weight of the ice.

1See C. Lingle & J. Clark (1985) A numerical model of interactions between a marine ice sheet and the solid

earth: application to a West Antarctic ice stream, J. Goephysical Research 90 (C1) 1100–1114. The constants used

here are from that source.
2Note ice has density ρi = 910 kg m−3. The disc load is described by a = 1000 km and µ = ρig(1000 m) =

8.92× 106 Nm−1.


