NAME:

4 April, 2008

MATH 422 Complex Analysis (Bueler)

Midterm Exam # 2

100 points total. You have 60 minutes.

1. (10 pts) Suppose f(z) = u(x, y) + iv(x, y) is analytic in an open set. Use the Cauchy-Riemann equations to show that the real part u is harmonic, that is, $u_{xx} + u_{yy} = 0$. What assumptions, if any, are necessary for your derivation to be correct?

2. (8 pts) Compute $\log(-i)$. (Recall that "log" is multi-valued.)

3. (8 pts) Explain why

$$\int_{-C} f(z) \, dz = -\int_{C} f(z) \, dz.$$

4. (8 *pts*) Show that $\exp(z)$ is real if and only if $\operatorname{Im} z = n\pi$ for some integer *n*.

5. (a) (5 pts) Define "cos z" if z is a complex number.

(b) (5 pts) Show that $\cos z = \cos x \cosh y - i \sin x \sinh y$ if z = x + iy.

6. (a) (8 pts) Show that $f(z) = \exp(\overline{z})$ is not analytic at any point of the complex plane.

(b) (9 pts) Let C be the contour given by the parameterization z(t) = t + i(1-t) for $0 \le t \le 1$. For the function f(z) in part (a), compute

$$\int_C f(z) \, dz.$$

7. (a) (5 *pts*) State the definition of " z^c " for z and c complex numbers (and $z \neq 0$).

(b) (8 pts) Find the principal value of $(1+i)^{4i}$.

(c) (8 *pts*) Show that $(z^c)^n = z^{cn}$ if n = 1, 2, 3, ...

8. (a) (5 pts) Find an antiderivative of $f(z) = 1/z^2$. Is this antiderivative multi-valued? Can an antiderivative ever be multi-valued according to the definition in the textbook?

(b) (10 pts) Suppose C is the circle $z = e^{i\theta}, -\pi \le \theta \le \pi$. Compute $\int_C \frac{dz}{z^2}$

Extra Credit. (3 *pts*) By writing $z = re^{i\theta}$, show that

$$\log(z^{1/n}) = \frac{1}{n} \log(z)$$

if $n = 1, 2, 3, \dots$

EXTRA SPACE