Midterm Exam \# 2

100 points total. You have 60 minutes.

1. (10 pts) Suppose $f(z)=u(x, y)+i v(x, y)$ is analytic in an open set. Use the Cauchy-Riemann equations to show that the real part u is harmonic, that is, $u_{x x}+u_{y y}=0$. What assumptions, if any, are necessary for your derivation to be correct?
2. (8 pts) Compute $\log (-i)$. (Recall that " \log " is multi-valued.)
3. (8 pts) Explain why

$$
\int_{-C} f(z) d z=-\int_{C} f(z) d z
$$

4. (8 pts) Show that $\exp (z)$ is real if and only if $\operatorname{Im} z=n \pi$ for some integer n.
5. (a) (5 pts) Define " $\cos z "$ if z is a complex number.
(b) (5 pts) Show that $\cos z=\cos x \cosh y-i \sin x \sinh y$ if $z=x+i y$.
6. (a) (8 pts) Show that $f(z)=\exp (\bar{z})$ is not analytic at any point of the complex plane.
(b) (9 pts) Let C be the contour given by the parameterization $z(t)=t+i(1-t)$ for $0 \leq t \leq 1$. For the function $f(z)$ in part (a), compute

$$
\int_{C} f(z) d z
$$

7. (a) (5 pts) State the definition of " z^{c} " for z and c complex numbers (and $z \neq 0$).
(b) (8 pts) Find the principal value of $(1+i)^{4 i}$.
(c) (8 pts) Show that $\left(z^{c}\right)^{n}=z^{c n}$ if $n=1,2,3, \ldots$
8. (a) (5 pts) Find an antiderivative of $f(z)=1 / z^{2}$. Is this antiderivative multi-valued? Can an antiderivative ever be multi-valued according to the definition in the textbook?
(b) (10 pts) Suppose C is the circle $z=e^{i \theta},-\pi \leq \theta \leq \pi$. Compute

$$
\int_{C} \frac{d z}{z^{2}}
$$

Extra Credit. (3 pts) By writing $z=r e^{i \theta}$, show that

$$
\log \left(z^{1 / n}\right)=\frac{1}{n} \log (z)
$$

if $n=1,2,3, \ldots$

EXTRA SPACE

