NAME:

Midterm Exam \# 1

100 points total. You have 60 minutes.

1. (a) (5 pts) For a function $f(z)=u(x, y)+i v(x, y)$, state the Cauchy-Riemann equations.
(b) (15 pts) Show that the function $f(z)=e^{-x} \cos y-i e^{-x} \sin y$ is complex differentiable at every point in the plane. Explain what facts or theorems you are using.
2. (a) (15 pts) Draw a decent sketch the set of points z, in the complex plane, given by the inequalities $1<|z+i|<2$. (Shade the set for clarity, and indicate several specific points in the complex plane, to give a scale.)
(b) (5 pts) Define what it means for a set of complex numbers to be a domain. (Give the new definition, not the definition of domain of a function.)
(c) (5 pts) Is the set in part (a) open, closed, or neither? Is the set in part (a) a domain?
3. (a) (10 pts) Find the real and imaginary parts u, v of the function $f(z)=\bar{z}^{3}$.
(b) (10 pts) For the function f defined in part (a), does $f^{\prime}(i)$ exist? Explain, and state what facts or theorems you are using.
(c) Extra Credit. (3 pts) Show that, for the function f defined in part (a), $f^{\prime}(0)$ does not exist.
4. (15 pts) Use the definition of the limit to prove that $\lim _{z \rightarrow z_{0}} \operatorname{Re} z=\operatorname{Re} z_{0}$.
5. (10 pts) Define $\operatorname{Arg} z$.
6. (10 pts) Reduce this to a real number:

$$
\frac{4 i}{(1-i)(2-i)(3-i)}
$$

EXTRA SPACE

