Worksheet: Orthogonal functions and polynomials

Definition. Two vectors $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are *orthogonal* if

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i = 0$$

Definition. Two continuous functions f(x) and g(x) are *orthogonal* on the interval [a, b] if

$$\langle f,g \rangle = \int_{a}^{b} f(x)g(x) \, dx = 0.$$

(The calculation $\langle f, g \rangle = \int_a^b f(x)g(x) dx$ is called the inner product of the two functions.)

A. Let $\mathbf{u} = (2, 1, 0)$ and $\mathbf{v} = (-\frac{1}{2}, 1, 1)$. Show \mathbf{u} and \mathbf{v} are orthogonal. Then sketch \mathbf{u}, \mathbf{v} on three-dimensional axes, basing these vectors at the origin as usual, and indicate the right angle between \mathbf{u} and \mathbf{v} .

B. Show $\mathbf{u} = (2, 3, -4, 1, 2)$ and $\mathbf{v} = (1, -1, 1, 3, 1)$ are orthogonal. (*I won't ask you to sketch because I don't know how. Neither do you.*)

C. Suppose $f(x) = x^k$ and $g(x) = x^l$ where $k \ge 0$ is an even integer and $l \ge 0$ is an odd integer. Show *f* and *g* are orthogonal on [-1, 1].

Definition. Continuous functions $q_0(x), q_1(x), q_2(x), \ldots$ form an *orthogonal set* on [a, b] if

$$\langle q_i, q_j \rangle = \int_a^b q_i(x) q_j(x) \, dx = 0$$
 whenever $i \neq j$.

D. Show the following polynomials form an orthogonal set on [-1, 1]:

 $\begin{array}{l} q_0(x)=1\\ q_1(x)=x\\ q_2(x)=3x^2-1\\ q_3(x)=5x^3-3x\\ (\textit{The full list is ∞-ly long!}) \end{array}$

E. (*Extra Credit*) Show sin(mx) and sin(nx) are orthogonal on $[0, \pi]$ if $m \neq n$ are nonnegative integers. (*Hint: Use a trigonometric identity to do the integral.*) Sketch this.