Worksheet: Suppose IEEE had a binary12 standard ...

Suppose that the IEEE 754 standard discussed in Chapter 5 of the textbook had a 12 bit version. It might look like this:

If 12 bits were organized this way they could represent the number

$$x = (-1)^s (1.b_1b_2b_3b_4b_5b_6b_7)_2 2^{(e_1e_2e_3e_4)_2 - 7_{10}}$$

Note the exception cases:

- exponent bits $(0000)_2$ define the number zero or subnormal numbers
- exponent bits $(1111)_2$ define the other exceptions: $\pm \infty$ and NaN (but you can ignor the details of these exceptions)
- (a) What is the largest real number that this system can represent? Show the bits.

(b) If we do not consider subnormal numbers, what is the smallest positive number that this system can represent? Show the bits. (*I.e. what is the first normal, representable number to the right of zero.*)

(c) What is the value of "machine epsilon" in this system?

(d) What is the representation of 4? What is the largest representable number which is smaller than 8? Show the bits of each number.
(e) In the interval $[4,8)$, how many numbers can be represented?
(f) Exactly how many distinct non-exceptional numbers can be represented in this system? (<i>Include the number zero but exclude subnormal numbers and any exceptions using exponent</i> $(1111)_2$, <i>i.e.</i> $\pm \infty$ <i>and NaN.</i>)
(g) Show the bits of one subnormal number.