
Math 310 Numerical Analysis (Bueler) 3 October 2019

Worksheet: A bad way to compute determinants
It turns out that in serious tasks on a computer one does not use determinants. Certainly we

will not compute them the way you were taught! The reasons why this is a bad idea, explained
on this worksheet, is a good example of numerical analysis thinking.

Definition. The determinant of a square matrix is a number computed from the entries:
• For a 1× 1 matrix: det ([a11]) = a11.
• For a 2× 2 matrix:

det

([
a11 a12
a21 a22

])
= a11a22 − a12a21.

• For a 3 × 3 matrix it can be computed by multiplying certain submatrices below the first
row, the minors, by entries in the first row, and then combining the results using alternating
signs:

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = +a11 det

([
a22 a23

a32 a33

])
− a12 det

([
a21 a23

a31 a33

])
+ a13 det

([
a21 a22

a31 a32

])
.

• For an n × n matrix A it can be computed recursively by multiplying the determinants of
the minors by entries of the first row and alternating signs:

det (A) =
n∑

j=1

(−1)j−1a1j det(A1j),

where A1j is defined here as the (n− 1)× (n− 1) matrix which remains after removing the
first row and jth column.

The following fact is proven in any linear algebra class; you may use it at any time.

Lemma. Given a square matrix A, suppose we construct matrix B by exchanging the ith and jth
rows of A, where i 6= j. Then det(B) = −det(A). The same is true if we swap columns.

(a) Use the above facts to compute the determinants by hand:

det

0 2 3
4 5 6
7 8 9

 =

det



4 2 5 6
0 2 0 −1
7 1 0 1
1 1 1 1


 =

If possible, confirm your answers using MATLAB.

(b) Count the number of multiplications needed to compute the determinant of a generic 2× 2
matrix. Do the same for a 3× 3 matrix and a 4× 4 matrix. (You don’t need to count the ± decisions as
multiplications.)



2

(c) Write a pseudocode for a determinant function that calls itself, that is, that is recursive. In
fact, fill in blanks below to get a functional MATLAB code.

function z = mydet(A)
% MYDET [put some documentation here if you want]

n = size(A,1);
if size(A,2) ˜= n, error(’only works on square matrices’), end

if n == 1
z = A(1,1);

elseif n == 2
z =

else

end

(d) Explain why the number of multiplications needed for mydet() to compute an n × n de-
terminant exceeds n!. Assuming that this is the case, argue that a computer capable of a billion
floating-point operations per second—way too optimistic for your laptop—would take more time
than the age of the universe to compute mydet(A) of a 30× 30 matrix.

(e) If you have access to MATLAB, compute the determinant of a random 50× 50 matrix:

>> A = randn(50,50);
>> det(A)

How long did this take? (More generally, how do you time computations in MATLAB?)

(f) Apparently the implementation of det() is not the same as mydet(). Fortunately, the
following fact is also true:

Lemma. det(AB) = det(A) det(B).
Use this and the LU decomposition idea (section 7.2.2) to suggest how det() might be doing it.
Confirm this online by finding the appropriate MATLAB technical documentation page.


