Solutions to Worksheet on 2 and 3 point Gaussian quadrature rules

Construct the n = 2 **rule "naively".** (a) The system simplifies to

$$w_1 + w_2 = 2$$

$$w_1 x_1 + w_2 x_2 = 0$$

$$w_1 (x_1)^2 + w_2 (x_2)^2 = \frac{2}{3}$$

$$w_1 (x_1)^3 + w_2 (x_2)^3 = 0$$

(b) With the substitution $x_1 = -a$, $x_2 = a$ the second equation is

$$-w_1a + w_2a = 0.$$

Since $a \neq 0$ so we can divide by it and get $w_1 = w_2$. The fourth equation says $-w_1a^3 + w_2a^3 = 0$, which is redundant now and can be ignored.

Then the first equation says

$$2w_1 = 2$$

so in fact $w_1 = w_2 = 1$. The third equation now says

$$2a^2 = \frac{2}{3}$$

from which it follows that $a = 1/\sqrt{3}$.

Thus the rule is

$$\int_{-1}^{1} f(x) \, dx \approx 1 \, f\left(-\frac{1}{\sqrt{3}}\right) + 1 \, f\left(\frac{1}{\sqrt{3}}\right).$$

Check degree of precision for the n = 3 **point rule.** The three integrals are exactly

$$\int_{-1}^{1} x^4 \, dx = \frac{2}{5}, \qquad \int_{-1}^{1} x^5 \, dx = 0, \qquad \int_{-1}^{1} x^6 \, dx = \frac{2}{7}.$$

Applying the n = 3 rule for these integrals gives

$$\begin{aligned} &\frac{5}{9} \left(-\sqrt{\frac{3}{5}} \right)^4 + \frac{8}{9} \, 0^4 + \frac{5}{9} \left(\sqrt{\frac{3}{5}} \right)^4 = 2 \, \frac{5}{9} \left(\frac{3^2}{5^2} \right) = \frac{2}{5}, \\ &\frac{5}{9} \left(-\sqrt{\frac{3}{5}} \right)^5 + \frac{8}{9} \, 0^5 + \frac{5}{9} \left(\sqrt{\frac{3}{5}} \right)^5 = -\frac{5}{9} \left(\sqrt{\frac{3}{5}} \right)^5 + \frac{5}{9} \left(\sqrt{\frac{3}{5}} \right)^5 = 0, \\ &\frac{5}{9} \left(-\sqrt{\frac{3}{5}} \right)^6 + \frac{8}{9} \, 0^6 + \frac{5}{9} \left(\sqrt{\frac{3}{5}} \right)^6 = 2 \, \frac{5}{9} \left(\frac{3^3}{5^3} \right) = \frac{6}{25}. \end{aligned}$$

Thus only the application to $f(x) = x^6$ is wrong, and p = 5 is indeed the degree of precision. (*Note that* 2/7 = 0.28571 *while* 6/25 = 0.24, *so the result is sort of close anyway. But not exact.*)