Worksheet: 3 methods to get the same polynomial

Only two rules:

- 1. please *do not* use the internet or any book
- 2. please *do* talk to each other

Suppose we have three points:

$$(x_0, y_0) = (-1, 3),$$
 $(x_1, y_1) = (0, 7),$ $(x_2, y_2) = (2, -2).$

There is a unique degree n=2 polynomial p(x) that goes through these points. This worksheet constructs this polynomial three different ways. However, it is the same polynomial so these apparently-different forms must be equivalent. The last step is to show that equivalence.

Vandermonde's construction. Assume

$$p(x) = c_0 + c_1 x + c_2 x^2.$$

Set up and solve a linear system of 3 equations in the 3 unknowns c_0, c_1, c_2 . Solve this system and write down the resulting p(x). As soon as you have a formula for p(x), stop.

Lagrange's construction. Compute Lagrange's polynomials $L_0(x)$, $L_1(x)$, $L_2(x)$ for the x-coordinates x_0, x_1, x_2 . (The is no reason to simplify the $L_i(x)$ here.) Then build p(x). As soon as you have a formula for p(x), stop.

1	N	ewto	n's c	onstri	action	Assume
ı	v	eww	11 5 6	viisti	ucuon.	Assume

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1).$$

Set up and solve a linear system of 3 equations in the 3 unknowns a_0, a_1, a_2 . As soon as you have a formula for p(x), stop.

Show the three polynomials are all the same. You can do this by converting into whichever is your preferred form for p(x).

Which is best? Primarily thinking in terms of higher-degree cases, give reasons why each of the three forms might be preferred over the others when using these polynomials for various purposes.