
Math 310 Numerical Analysis (Bueler) October 26, 2017

Solutions to Midterm Exam

1. Here f(x) = sinx, n = 4, and x0 = 0. The particular value is x = 0.5 so by Taylor’s theorem,

f(0.5) = p4(0.5) +
f (5)(ξ)

5!
(0.5− 0)5

where ξ is some number between x0 = 0 and x = 0.5. But all we want is a bound for the error.
We know f (5)(x) = cosx. Because | cos θ| ≤ 1 for any θ,

|f(0.5)− p4(0.5)| =
∣∣∣∣cos(ξ)120

(0.5)5
∣∣∣∣ = | cos(ξ)|120 · 25

≤ 1

3840
.

(Full credit for a correct but unsimplified number.) This upper bound is between 10−4 and 10−3.

2. Theorem. Suppose f ∈ Cn+1[a, b] and x0, x1, . . . , xn are distinct points in [a, b]. Then there is
a unique polynomial pn(x) of degree at most n so that pn(xi) = f(xi) for i = 0, 1, . . . , n. Further-
more if x ∈ [a, b] then there is ξ ∈ [a, b] so that

f(x) = pn(x) +
f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn).

(You do not have to state the second sentence “Then there is . . . ” to receive full credit. I state it here to
clarify the meaning of pn(x). What you do have to give correctly are the hypotheses and the form of the
remainder term.)

3. (a) sketch of Newton at left, and (c) sketch of secant at right

(b) As shown in the left sketch, we find the tangent line through the point (xn, f(xn)). It has slope
m = f ′(xn) so it is

`(x) = f(xn) + f ′(xn)(x− xn).
This line crosses the x-axis at xn+1:

0 = f(xn) + f ′(xn)(xn+1 − xn).

Solving for xn+1 then gives the Newton’s method iteration formula:

xn+1 = xn −
f(xn)

f ′(xn)
.

4. Euler’s method in general is yn+1 = yn + hf(tn, yn). In this case:

yn+1 = yn + h(tn − y2n).
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The t-values are known. We have t0 = 2, and spacing h = 1, so t1 = 3 and t2 = 4. Now we take
two steps:

y1 = y0 + h(t0 − y20) = 1 + 1 · (2− 12) = 2,

y2 = y1 + h(t1 − y21) = 2 + 1 · (3− 22) = 1.

Thus the three points are (t0, y0) = (2, 1), (t1, y1) = (3, 2), and (t2, y2) = (4, 1).

5. We apply Taylor’s theorem with n = 1 and base point x:

f(x+ h) = f(x) + f ′(x)h+
f ′′(ξ)

2!
h2.

Here ξ is some value between x and x+ h. Then divide by h and rearrange slightly:

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(ξ)

2
h.

To justify replacing the last term with “+O(h),” subtract, take absolute values, and find an upper
bound: ∣∣∣∣f ′(x)− f(x+ h)− f(x)

h

∣∣∣∣ = |f ′′(ξ)|2
|h| ≤ C|h|.

Here the constant is C = 1
2 maxx |f ′′(x)|. Thus

f ′(x) =
f(x+ h)− f(x)

h
+O(h).

6. (a) (The best pseudocode would have more checks, e.g. whether [a, b] is a bracket and whether f(c)
is exactly zero, but full credit is given for the following minimal version.)

function z = bisection(f,a,b,n)

for k = 1 to n
c = (a + b) / 2
if f(a) * f(c) < 0

b = c
else

a = c
end

end
z = c

(b) Doing n steps of bisection reduces the length of the interval by a factor of 2n, so we solve

|bn − an| =
1

2n
|b− a| = 1

2n
≤ 10−8

for n. That is,
2n ≥ 108

or by taking the base 2 logarithm,

n ≥ log2(10
8) = 8 log2(10) =

8 ln 10

ln 2
.

(Any of these expressions gets full credit. With a calculator you’d find: n ≥ 26.575.)

(c) (Here is a minimal but full-credit answer.) Bisection is better than Newton because it does not
need f ′. Also, it is more robust because it maintains a bracket around the solution. Newton is
better because it is faster, namely it converges quadratically once it gets close.
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7. (a)
p(x) = 7 + x · ((−2) + x · (10 + x · 4)).

(b)

function z = horner(c,x)

n = length(c) - 1
z = c(n+1)
for k = n downto 1 % "k = n:-1:1" in Matlab

z = c(k) + x * z
end

8. Because −x2 < 0 if x 6= 0, e−x
2
< e0 = 1 if x 6= 0. So the maximum is at zero:

‖f‖∞ = max
−1≤x≤1

|f(x)| = e0 = 1.

(You can also do calculus to find the maximum if you don’t observe the above.)

9. (a)

p2(x) = 2
(x− 1)(x− 3)

(0− 1)(0− 3)
+ (−1) (x− 0)(x− 3)

(1− 0)(1− 3)
+ 7

(x− 0)(x− 1)

(3− 0)(3− 1)
.

(b) The Newton form is

p2(x) = a0 + a1(x− 0) + a2(x− 0)(x− 1).

Seeking p2(xi) = yi gives three equations in three unknowns:

a0 = 2,

a0 + a1(1− 0) = −1,
a0 + a1(3− 0) + a2(3− 0)(3− 1) = 7.

Thus a0 = 2, then a1 = (−1− 2)/1 = −3, and a2 = (7− 2− 3(−3))/6 = 14/6 = 7/3. Thus

p2(x) = 2 + (−3)(x− 0) +
7

3
(x− 0)(x− 1).

10. (Was mislabeled as “9.” Also, it should have said “xn+1 =
1
3e

2xn” with an “n” subscript.)
Let g(x) = 1

3e
−2x. Note that g is decreasing and g(0) = 1

3 and g(2) = 1
3e
−4 < 1

3 are both in [0, 2]
so g([0, 2]) ⊂ [0, 2]. Also,

g′(x) = −2

3
e−2x

so if x ≥ 0 then |g′(x)| = 2
3e

0 = 2
3 < 1. Let γ = 2

3 . By the Mean Value Theorem we have shown

|g(x)− g(y)| ≤ γ|x− y|
for all x, y in [0, 2]. From the Fixed-point Convergence Theorem it follows that xn+1 = g(xn)
converges for all x0 in [0, 2].

(It converges to the unique α in [0, 2] such that α = g(α). But you don’t need to say this.)
(One thing that is helpful, and worth a point of credit, is a sketch.)

Extra Credit. Note that limk→∞ 3−k = 0 so limn→∞ xn = 0 also. Let α = 0. Then

xn+1 − α
(xn − α)2

=
3−(2

n+1)(
3−(2n)

)2 =
3−(2 2

n)

3−2 (2n)
= 1.

Since 1 ∈ (0,∞), by definition xn converges quadratically to α = 0.


