Math 310 Numerical Analysis (Bueler)

October 26, 2017

Solutions to Midterm Exam

1. Here $f(x) = \sin x$, n = 4, and $x_0 = 0$. The particular value is x = 0.5 so by Taylor's theorem,

$$f(0.5) = p_4(0.5) + \frac{f^{(5)}(\xi)}{5!}(0.5 - 0)^5$$

where ξ is some number between $x_0 = 0$ and x = 0.5. But all we want is a bound for the error. We know $f^{(5)}(x) = \cos x$. Because $|\cos \theta| \le 1$ for any θ ,

$$|f(0.5) - p_4(0.5)| = \left|\frac{\cos(\xi)}{120}(0.5)^5\right| = \frac{|\cos(\xi)|}{120 \cdot 2^5} \le \frac{1}{3840}$$

(Full credit for a correct but unsimplified number.) This upper bound is between 10^{-4} and 10^{-3} .

2. Theorem. Suppose $f \in C^{n+1}[a, b]$ and x_0, x_1, \ldots, x_n are distinct points in [a, b]. Then there is a unique polynomial $p_n(x)$ of degree at most n so that $p_n(x_i) = f(x_i)$ for $i = 0, 1, \ldots, n$. Furthermore if $x \in [a, b]$ then there is $\xi \in [a, b]$ so that

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n).$$

(You do not have to state the second sentence "Then there is ..." to receive full credit. I state it here to clarify the meaning of $p_n(x)$. What you do have to give correctly are the hypotheses and the form of the remainder term.)

3. (a) sketch of Newton at left, and (c) sketch of secant at right

(b) As shown in the left sketch, we find the tangent line through the point $(x_n, f(x_n))$. It has slope $m = f'(x_n)$ so it is

$$\ell(x) = f(x_n) + f'(x_n)(x - x_n).$$

This line crosses the *x*-axis at x_{n+1} :

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n).$$

Solving for x_{n+1} then gives the Newton's method iteration formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

4. Euler's method in general is $y_{n+1} = y_n + hf(t_n, y_n)$. In this case:

$$y_{n+1} = y_n + h(t_n - y_n^2).$$

The *t*-values are known. We have $t_0 = 2$, and spacing h = 1, so $t_1 = 3$ and $t_2 = 4$. Now we take two steps:

$$y_1 = y_0 + h(t_0 - y_0^2) = 1 + 1 \cdot (2 - 1^2) = 2,$$

$$y_2 = y_1 + h(t_1 - y_1^2) = 2 + 1 \cdot (3 - 2^2) = 1.$$

Thus the three points are $(t_0, y_0) = (2, 1)$, $(t_1, y_1) = (3, 2)$, and $(t_2, y_2) = (4, 1)$.

5. We apply Taylor's theorem with n = 1 and base point *x*:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(\xi)}{2!}h^2.$$

Here ξ is some value between x and x + h. Then divide by h and rearrange slightly:

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{f''(\xi)}{2}h.$$

To justify replacing the last term with "+O(h)," subtract, take absolute values, and find an upper bound:

$$\left| f'(x) - \frac{f(x+h) - f(x)}{h} \right| = \frac{|f''(\xi)|}{2} |h| \le C|h|.$$

Here the constant is $C = \frac{1}{2} \max_{x} |f''(x)|$. Thus

$$f'(x) = \frac{f(x+h) - f(x)}{h} + \mathcal{O}(h).$$

6. (a) (The best pseudocode would have more checks, e.g. whether [a, b] is a bracket and whether f(c) is exactly zero, but full credit is given for the following minimal version.)

(b) Doing *n* steps of bisection reduces the length of the interval by a factor of 2^n , so we solve

$$|b_n - a_n| = \frac{1}{2^n}|b - a| = \frac{1}{2^n} \le 10^{-8}$$

for *n*. That is,

 $2^n \ge 10^8$

or by taking the base 2 logarithm,

$$n \ge \log_2(10^8) = 8\log_2(10) = \frac{8\ln 10}{\ln 2}.$$

(Any of these expressions gets full credit. With a calculator you'd find: $n \ge 26.575$.)

(c) (*Here is a minimal but full-credit answer.*) Bisection is better than Newton because it does not need f'. Also, it is more robust because it maintains a bracket around the solution. Newton is better because it is faster, namely it converges quadratically once it gets close.

$$p(x) = 7 + x \cdot ((-2) + x \cdot (10 + x \cdot 4))$$

(b)

8. Because $-x^2 < 0$ if $x \neq 0$, $e^{-x^2} < e^0 = 1$ if $x \neq 0$. So the maximum is at zero:

$$||f||_{\infty} = \max_{-1 \le x \le 1} |f(x)| = e^0 = 1$$

(You can also do calculus to find the maximum if you don't observe the above.)

$$p_2(x) = 2\frac{(x-1)(x-3)}{(0-1)(0-3)} + (-1)\frac{(x-0)(x-3)}{(1-0)(1-3)} + 7\frac{(x-0)(x-1)}{(3-0)(3-1)}$$

(b) The Newton form is

$$p_2(x) = a_0 + a_1(x - 0) + a_2(x - 0)(x - 1)$$

Seeking $p_2(x_i) = y_i$ gives three equations in three unknowns:

$$a_0 = 2,$$

 $a_0 + a_1(1 - 0) = -1,$
 $a_0 + a_1(3 - 0) + a_2(3 - 0)(3 - 1) = 7.$

Thus $a_0 = 2$, then $a_1 = (-1 - 2)/1 = -3$, and $a_2 = (7 - 2 - 3(-3))/6 = 14/6 = 7/3$. Thus

$$p_2(x) = 2 + (-3)(x-0) + \frac{7}{3}(x-0)(x-1).$$

10. (Was mislabeled as "9." Also, it should have said " $x_{n+1} = \frac{1}{3}e^{2x_n}$ " with an "n" subscript.)

Let $g(x) = \frac{1}{3}e^{-2x}$. Note that g is decreasing and $g(0) = \frac{1}{3}$ and $g(2) = \frac{1}{3}e^{-4} < \frac{1}{3}$ are both in [0,2] so $g([0,2]) \subset [0,2]$. Also,

$$g'(x) = -\frac{2}{3}e^{-2x}$$

so if $x \ge 0$ then $|g'(x)| = \frac{2}{3}e^0 = \frac{2}{3} < 1$. Let $\gamma = \frac{2}{3}$. By the Mean Value Theorem we have shown $|g(x) - g(y)| \le \gamma |x - y|$

for all x, y in [0, 2]. From the Fixed-point Convergence Theorem it follows that $x_{n+1} = g(x_n)$ converges for all x_0 in [0, 2].

(It converges to the unique α in [0, 2] such that $\alpha = g(\alpha)$. But you don't need to say this.) (One thing that is helpful, and worth a point of credit, is a sketch.)

Extra Credit. Note that $\lim_{k\to\infty} 3^{-k} = 0$ so $\lim_{n\to\infty} x_n = 0$ also. Let $\alpha = 0$. Then

$$\frac{x_{n+1} - \alpha}{(x_n - \alpha)^2} = \frac{3^{-(2^{n+1})}}{(3^{-(2^n)})^2} = \frac{3^{-(2^{2n})}}{3^{-2(2^n)}} = 1.$$

Since $1 \in (0, \infty)$, by definition x_n converges quadratically to $\alpha = 0$.